

# **Unimodal Aggregation for CTC-based Speech Recognition**

Ying Fang, Xiaofei Li\* Westlake University, Hangzhou, China



### Introduction

**Topic** Non-autoregressive automatic speech recognition (NAR ASR)

#### **AR methods vs. NAR methods**

- AR: Attention mechanism ——Better performance, while serial and slow inference.
- NAR: CTC ——Reduced performance, but parallel and fast inference.

Proposed method Unimodal aggregation (UMA), to segment and integrate the feature frames that belong to the same text token

**Contributions** - Superior or comparable recognition performance to other advanced NAR methods on three Mandarin datasets.

Shortens the sequence length, lower computational complexity.

### Method

- **Encoder:** Transformer, Conformer, E-Branchformer, etc.
- **Unimodal aggregation module**
- **Decoder:** NAR self-attention network.





### Example



#### Denotation

- $\alpha_t$ : UMA weights, has first increasing and then decreasing pattern
- T', I: the sequence length before and after UMA
- $\tau_i$ : the time index of UMA valley, where  $\alpha_t \leq \alpha_{t-1}$  and  $\alpha_t \leq \alpha_{t-1}$

## **Results on HKUST**

| Model                | Transfomer             | Conformer              | E-Branchformer         |
|----------------------|------------------------|------------------------|------------------------|
|                      | sub del ins CER        | sub del ins CER        | sub del ins CER        |
| Hybrid CTC/Attention | 18.02.93.2 24.0        | 16.93.13.3 23.3        | 15.22.33.120.6         |
| ✓ + beam search      | 15.92.82.8 <b>21.6</b> | 15.72.53.0 <b>21.2</b> | 14.12.32.8 19.3        |
| CTC                  | 18.43.03.324.7         | 17.32.83.223.2         | 16.02.62.921.6         |
| Self-conditioned CTC | 18.32.93.3 24.5        | 16.32.63.2 22.1        | 14.92.53.020.4         |
| ≥ UMA (prop.)        | 15.96.52.6 25.0        | 15.62.73.221.4         | 14.13.42.620.1         |
| + self-condition     | 15.83.92.8 <b>22.6</b> | 14.42.63.1 20.0        | 13.72.62.9 <b>19.2</b> |

- Conformer encoder brings some time shifts, but its UMA weights are more discriminative.

# **Results on AISHELL-1/2**

#### **AISHELL-1 (178 hours)**

| Model                         | dev | test | RTF   | #Params(M) |
|-------------------------------|-----|------|-------|------------|
| ∠ Hybrid (Conformer)          |     | 5.6  | 0.125 | 46.3       |
| $\overline{4}$ + beam search  | 4.3 | 4.7  | 0.461 | 46.3       |
| LASO-large*                   | 4.9 | 6.6  | -     | 80.0       |
| Paraformer*                   | 4.6 | 5.2  | -     | -          |
| A CTC<br>Self-conditioned CTC | 5.6 | 6.1  | 0.052 | 50.4       |
| Self-conditioned CTC          | 4.6 | 4.9  | 0.059 | 51.5       |
| UMA (prop.)                   | 4.5 | 4.8  | 0.039 | 42.6       |
| + self-condition              | 4.4 | 4.7  | 0.045 | 44.7       |

#### AISHELL-2 (1000 hours)

| Model            | android | iOS | mic | RTF   | #Params(M) |
|------------------|---------|-----|-----|-------|------------|
|                  | 6.8     | 6.3 | 6.8 | 0.205 | 116.4      |
| ✓ + beam search  | 6.1     | 5.7 | 6.1 | 0.954 | 116.4      |
| LASO-large*      | 7.4     | 6.7 | 7.4 |       | 80.0       |
| ≌ CIF+SAN*       | 6.2     | 5.8 | 6.3 | -     | -          |
| ZUMA (prop.)     | 6.0     | 5.3 | 6.0 | 0.085 | 105.1      |
| + self-condition | 6.0     | 5.3 | 5.9 | 0.098 | 110.4      |

- May lead to extra deletion errors, adding self-conditioned layers can alleviate this
- Better encoder improve the quality of UMA weights

### Conclusions

- UMA, a **simple yet effective** method for NAR ASR
- Learn better feature representation.
- Reduce the computation complexity -
- Integrated with self-conditioned layers improves performance
- UMA outperforms all comparison NAR models.
- Achieves comparable performance with the hybrid CTC/attention+beam search
- Model size and RTF are both smaller than CTC

Email: <u>fangying@westlake.edu.cn</u>, <u>lixiaofei@westlake.edu.cn</u> Website: https://audio.westlake.edu.cn/ GitHub: <u>https://github.com/Audio-WestlakeU/UMA-ASR</u>