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ABSTRACT

Clusters of neurons generate electrical signals which prop-
agate in all directions through brain tissue, skull, and scalp
of different conductivity. Measuring these signals with elec-
troencephalography (EEG) sensors placed on the scalp results
in noisy data. This can have severe impact on estimation,
such as, source localization and temporal response functions
(TRFs). We hypothesize that some of the noise is due to
a Wiener-structured signal propagation with both linear and
nonlinear components. We have developed a simple nonlin-
earity detection and compensation method for EEG data anal-
ysis and utilize a model for estimating source-level (SL) TRFs
for evaluation. Our results indicate that the nonlinearity com-
pensation method produce more precise and synchronized SL
TRFs compared to the original EEG data.

Index Terms— Auditory Processing, EEG, Nonlinearity
Compensation, Temporal Response Function, Source Local-
ization

1. INTRODUCTION

Nonlinear science has been humorously likened to studying
all animals except elephants [1]. One interpretation is that
linearity is an important exception to the rule of nonlinear
natural phenomena. Another interpretation is that finding the
correct nonlinear system which describes the world perfectly
is extremely difficult due to the uncountable combinations
of functions and variables. A prime example of such com-
plexity is the human brain, composed of about 100 billion
neurons constantly interacting to manage daily tasks, yet
with puzzling underlying dynamics [2]. Notably, studies
reveal that electroencephalography (EEG) signals—arising
from electrodes on the scalp and measures neuronal cluster
electrical activity—are also nonlinear, non-stationary, high-
dimensional, and exceedingly noisy [3, 4, 5, 6, 7].
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Neural speech tracking involves predicting EEG re-
sponses from speech features using linear filters called Tem-
poral Response Functions (TRFs) [8]. These TRFs, typically
estimated at the sensor level, predict EEG responses and
exhibit notable peaks at specific time intervals (e.g., around
50-70ms for P1 and 100-180ms for N1). The Neuro-Current
Response Function (NCRF) model, a one-step approach de-
veloped for higher signal-to-noise ratio (SNR) magnetoen-
cephalography (MEG) data, extends the concept to estimat-
ing TRFs at source level [9]. However, NCRFs face certain
limitations in accurately accounting for complex nonlinear
behaviors within EEG channels.

This study focuses on a novel nonlinearity detection and
compensation method for EEG data analysis and utilizes the
NCRF model [10] for evaluation. We explore nonlinear ef-
fects in estimating sources and source-level TRFs (SL TRFs)
from EEG data of a listener with hearing impairment in a
cocktail party-like environment. To address the complexity
of modeling nonlinear brain behaviors, we present a binning-
based method to counter various nonlinear behaviors in the
EEG sensors.

The results support our hypothesis of Wiener-structured
signal propagation, i.e., a static nonlinearity on output. More-
over, we evaluate the precision in estimating a non-parametric
nonlinearity, revealing that the number of bins used per sensor
indicates the sensor-specific degree of nonlinearity. Building
upon the insights gained from the binning method, we address
some of these sensor-specific nonlinear behaviors. Here, the
prime emphasis is on employing the NCRF model to evalu-
ate the effectiveness of our compensation approach. Further-
more, We analyze how the nonlinearities are distributed over
the scalp. The study’s findings indicate that our compensated
EEG data yield notably more precise and synchronized SL
TRFs compared to the original EEG data.

2. METHOD

The study’s workflow is presented in Fig. 1. It shows the orig-
inal EEG signal Y, serving as an input to the NCRF model
(briefly discussed in Section 2.1), with subsequent evalua-
tion of SL TRF results. Following this, the predicted EEG
Ŷ from the model is compared to the original EEG signal Y
within the nonlinear compensation method. This aims to ad-



dress nonlinear components within the data and is outlined in
Section 2.2. The resulting compensated output Ynew is then
subsequently fed back into the NCRF model, facilitating the
evaluation of SL TRFs.
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Fig. 1: Block diagram of the workflow. The original EEG
data Y enters the NCRF-model and SL TRFs are evaluated
by visual inspection. The predicted EEG data Ŷ from the
NCRF-model is compared to Y in the nonlinear compen-
sation method and Ynew is produced after compensation of
nonlinear components. SL TRF estimations from the NCRF-
model are evaluated.

2.1. The NCRF-model

Initially, the analysis of SL TRFs using the NCRF model
was introduced for MEG data collected from individuals in-
structed to listen to a single continuous speech stream [9].
Our preliminary findings, as outlined in [10], indicate that the
NCRF model may also be applicable to EEG data, even when
the SNR is considerably lower compared to MEG data. The
NCRF model solves a nonlinear regression task by iteratively
solving two linear systems, see [9].

2.2. The binning-based nonlinear compensation method

Ideally, the predicted EEG Ŷ using the linear SL TRFs should
be correlated with the measured EEG data Y. However, the
top left panel of Fig. 2 shows a representative sensor with-
out any apparent correlation. As an example of the method,
we partitioned the data into equally spaced bins, excluding
the first and last 100 samples with the largest and smallest Ŷ,
respectively. The mean in each bin was computed, as demon-
strated in the top right panel. Assuming that the middle bins
encompass the majority of data points and are consequently
less susceptible to noise, we fitted a line between the mean
values of these two bins. Notably, the mean values of the
outer bins deviating from the green line indicate the presence
of nonlinearities.

Our focus lies in compensating for the deviations. Each
sample in each outer bin is weighted with the value of the
line at the center of each bin divided by the mean of the bin.
The outcomes of this compensation are displayed in the bot-
tom panels of Fig. 2, where red datapoints denote the new
EEG data Ynew. SL TRF estimates were compared with
those derived from the original EEG data Y. Pseudo-code

Fig. 2: Illustration of the nonlinear compensation method for
one channel with four bins. Top left: Measured EEG Y and
predicted EEG Ŷ after the NCRF-model divided into four
bins. Top right: The mean in each bin and a line fitted be-
tween the means in the two middle bins. Bottom left: New
EEG data Ynew after the datapoints in the outer bins have
been compensated such that the new mean lies on the line
(bottom right).

outlining the nonlinear compensation method is provided in
Algorithm 1.

The measured and predicted EEG data were divided into
equally sized estimation and validation sets. The nonlinear
compensation method was applied to each sensor, and the
mean values of the two sets were contrasted.

Given our hypothesis that nonlinear components could
differ across sensors, we investigated how different number
of bins effect the results. The Euclidean distance between the
estimation and the validation datasets was computed for each
number of bins and for each sensor. Subsequently, the num-
ber of bins yielding the smallest norm for each sensor was
identified. This approach leads to a sensor-specific nonlin-
ear compensation, as the optimal number of bins may vary
between sensors.

3. EXPERIMENTAL DATASET

This section explains the experimental paradigm and data pro-
cessing of the EEG and audio data.

3.1. Experimental paradigm

A subject with mild-to-moderate hearing loss was instructed
to selectively attend to one out of the two concurrent frontal
speech streams (±30◦), while 16-talker babble noise played
in the background (+3 dB SNR). The subject was wearing
hearing aids with noise reduction algorithms switched on,
aiming at reducing the impact of the background babble noise.
Each trial consisted of 33 s, preceded by 5 s of the background
babble noise before the onset of the frontal speakers and EEG
data was recorded with a 64-channel BioSemi ActiveTwo
system at a sampling rate of 1024Hz. This dataset has been
used for different analysis and a complete description of the



Algorithm 1 The nonlinear compensation method
Input: Original EEG Y ∈ RN×T and predicted EEG

Ŷ ∈ RN×T for N channels and T samples; k number of
bins; d number of discarded samples.

Output: Modified EEG Ynew ∈ RN×T

procedure
for each channel ch do

Define B bins s.t. j: Sj = {} with lower bound bj
and upper bound uj

for each sample s do
Set (Ŷ(ch, s),Y(ch, s)) into the appropriate
bin based on the value of Ŷ

end for
for each bin j do

m̄j =mean(Y) for Y s.t. (Ŷ,Y) ∈ Sj

end for
Fit a line f between the mean values
m̄j s.t. j ∈ the two middle bins
for each sample s do

if (Ŷ(ch, s),Y(ch, s)) ∈ bin k then
xk as the mid Ŷ-value in bin k
Ynew(ch, s) = Y(ch, s)f(xk)/m̄k

else
Ynew(ch, s) = 0

end if
end for

end for
end procedure

experimental setup is provided in [11]. This study comprised
of 40 trials and was reviewed and approved by The Swedish
Ethical Review Authority, Sweden (DNR: 2022-05129-01).

3.2. Data preprocessing

The envelopes of the target and masker speech stimulus in
each trial were computed with the absolute values of the
Hilbert transform. These envelopes were then band-pass fil-
tered between 1–8Hz by a 6th order Butterworth filter, down-
sampled to 100Hz and cut between the first and last second
to remove the edge effects. EEG data was re-referenced to
the two mastoid channels, 50Hz line noise was filtered out
followed by a 6th order Butterworth filter pass-band filtering
at 0.5–70Hz. Manual inspection did not identify any bad
channels. Artifacts such as eye blinks, heart beats and mus-
cle movements were removed with independent component
analysis [12]. The data was then filtered with a pass-band
of 1-8Hz using a 6th order Butterworth filter, downsampled
to 100Hz and cut to match the speech envelopes. For more
details, see [11, 13, 14].

The standard 10-20 sensor locations for the 64 EEG
channels used in the Biosemi-64 cap [15] was used in this
study. An average brain model ’fsaverage’ and a volume
source space with 10mm spacing between voxels were used

to compute the lead field matrix which consisted of 1024
voxel sources in three-dimensional space [16]. The noise
covariance matrix was computed from pre-stimulus EEG
recordings from the subject, preprocessed the same way as
for the speech-evoked EEG data recordings [17]. Only the
diagonal elements (the variance measured at each sensor)
were kept as the final approximation of the noise covariance
matrix [18].

4. RESULTS AND DISCUSSION

The middle panels in Fig. 3 show the estimated temporal pro-
files of the left hemispheres (lh; top) and right hemispheres
(rh; bottom), respectively. Each brain source voxel is repre-
sented by the amplitude of its 3-dimensional vector TRF and
contributes to a line in the panel. Fig. 3 (A) shows the results
for the original EEG data Y and the target stimulus where the
P1-peak around 60ms is clearly visible in both hemispheres.
A significant N1-peak around 175ms along with a small P2-
peak at 250ms are visible in the left hemisphere. The N1-
peak at 190ms is smaller in the right hemisphere, as speech
and language processing is mostly left hemisphere dominant
[19]. The top and bottom brain plots show the source local-
ization at the characteristic peaks. The amplitudes in the left
hemisphere are close to the auditory cortex, while the loca-
tion of the amplitudes in the right hemisphere is slightly more
frontal than expected.

60ms
177ms 225ms

50ms 150ms 190ms

Time [ms]

60ms
174ms

57ms

250ms

190ms

le�
hemi.
[V]

right
hemi.
[V]

Time [ms]

A B

0.0002

0

Fig. 3: (A) Estimated source TRFs for the original EEG data
Y and the target stimulus. The middle panels show the tem-
poral profiles of the left (lh; top) and right (rh; bottom) hemi-
spheres respectively. Each voxel is represented by the am-
plitude of its 3-dimensional vector TRF and contributes to a
line in the panel. The top and bottom brain plots show the
source localization at the characteristic peaks. (B) Estimated
SL TRFs after nonlinear compensation for the binned EEG
data Ynew and the target stimulus.

Results of the validation procedure for five evenly dis-
tributed channels are presented in the left panel of Fig. 4. A
higher bin-number implies fewer samples per bin, which in-
creases the impact from noise. The bin-size with the lowest
norm was picked for each channel. The right panel in Fig. 4
shows the number of bins for all channels and where they are
placed on the scalp. Dividing the dataset into three bins seems
to benefit most of the channels, although one bigger and one
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Fig. 4: Left: Illustration of the procedure of choosing the
number of bins for five channels. The number with the lowest
norm between estimation and validation datasets is chosen.
Right: The channel positions on the scalp and the number of
bins used for the original EEG data Y.

smaller cluster of 4-5 bins are shown in the right back and
mid-center part of the scalp.

The nonlinear compensation method with the original
EEG data for 9 channels evenly distributed over the cortex
is presented in Fig. 5. Each datapoint is the mean value of
all samples in the bin. Both datasets follow the same pattern,
where a positive correlation between Y and Ŷ is shown for
several channels. However, channels P7 and POz positioned
in the parietal area show some stronger nonlinear behaviors.
In contrast to the other channels presented in Fig. 5, these two
channels needed to be modeled with five respective four bins.
This result reflects that larger number of bins are necessary to
capture more pronounced nonlinear behaviors.

Fig. 5: Illustration of the validation procedure of the nonlinear
compensation method for nine evenly distributed channels.
All subplots show similar shapes between the equally sized
datasets of the original EEG data Y.

The temporal profiles and source localization of the non-
linear compensated EEG data are shown in Fig. 3 (B). Com-
pared to the results of the original EEG data in Fig. 3 (A),
the nonlinear compensated data seem to give smoother and
more synchronized SL TRF:s. The source localization is
more sparse and precise compared to Fig. 3 (A), which is es-
pecially noticeable, and relevant, for the important N1-peak
in the left hemisphere.

The deviation of the mean value to the line in a bin can
be viewed as a measure of nonlinearity. A sensor-specific ad-
ditional analysis was made where three bins were used for
all channels. A line was fitted between the means of the two
outer bins, and the deviation of the mean in the middle bin
was computed. A value above the line gives a positive resid-
ual, and a mean value below gives a negative residual. The
topoplot on the right side of Fig. 6 shows the error of the
mean value to the line for the middle bin. It shows an in-
teresting pattern where positive values are located in the left
hemisphere and negative values in the right hemisphere. The
largest positive value was given in channel F1, which is plot-
ted on the left side of Fig. 6. Further investigations on more
data and subjects are needed to understand if this pattern is
specific to the setup and/or subjects. Future work should also
include statistical tests using more subjects to validate the
nonlinear compensation method.

Fig. 6: Left: Illustration of the mean values in three bins and
the fitted line. Channel F1 gave the largest positive residual.
Right: Topoplot of the middle bin residuals when three bins
are used for all sensors.

5. CONCLUSIONS

We have investigated the impact of nonlinear components in
real data collected from EEG sensors measuring the electrical
brain activity in response to competing speech. EEG data
is known to be noisy, making the estimation of source level
temporal responses (SL TRFs) a very challenging task. We
hypothesized that some of the noise were due to Wiener-
structured signal propagation from the firing neurons through
brain tissue, skull, and scalp to the sensors placed on the outer
scalp.

We have developed a simple nonlinearity detection and
compensation method which compares the original EEG data
with the predicted EEG data computed from the SL TRF:s.
We estimated the nonlinearity of each sensor and were able to
compensate for some of these nonlinear components. Our re-
sults indicate that the nonlinearity compensation method pro-
duced more precise and more synchronized SL TRFs when
compared to the original EEG data.
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