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1 Introduction
Measurement of thousands of impulse responses (IRs)

Two approaches: static or continuous
Example: HRTF measurements with rotating listener
Unconstrained Expectation Maximization (EM) too complex in real world [1]

Core idea: impose model structure to reduce parameters and complexity

2 Signal Model
Problem: for acoustic MIMO system with T loudspeakers and R microphones,
estimate R·T length-L IRs offline given inputs xt(k) and noisy outputs yr(k):

yr(k) =
T∑

t = 1
xt(k) ∗ hrt,k(k) + νr(k) , r = 1, . . . , R

MIMO block observation model with block size No and k = nNo

zn = Azn−1 + qn

yn = Cnzn + νn (observation equation)
(state equation)

zn =
hT

11,n . . . hT
1T,n . . . hT

RT,n

T ∈ RRTL
state transition matrix A process noise qn ∼ N (0, Γ)

observation vector

yn =
yT

1,n . . . yT
R,n

T∈RRNo with

No samples of yr(k) per receiver

observation matrix Cn

realizes convolution

with input signals xt(k)

observation noise νn ∼ N (0, Σ)St
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3 EM-Based State and Parameter Estimation
Given observations {y1, . . . , yN}, jointly estimate states {z1, . . . , zN} and
parameters θ ={A, Γ, Σ, µ0, P0} by maximizing expected log-likelihood [1, 2]

E-step: maximum-likelihood estimates for state µ̂n and error covariance V̂n

– Kalman filter recursion: n = 1, . . . , N

Pn−1 = AVn−1AT + Γ, µn = Aµn−1 + Kn (yn −CnAµn−1)
Kn = Pn−1CT

n

CnPn−1CT
n + Σ

−1
, Vn = (INz

−KnCn) Pn−1

– Kalman smoother recursion: n = N, . . . , 1

Jn = VnATP−1
n , µ̂n = µn + Jn (µ̂n+1 −Aµn) , V̂n = Vn + Jn

V̂n+1 −Pn

 JT
n

M-step: parameter update rules use E-step results

θ⋆
i ← fi

µ̂1, . . . µ̂N , V̂1, . . . V̂N , . . .
 for θi ∈ θ

Excessive requirements for signal length Nx =NNo and state dim. Nz =RTL:
Storage O (NN 2

z ) and complexitya: O (NN 3
z )

adominant term for matrix-matrix multiplications

4 Specialized Model Structures
Ideas:

Impose structure for parameters: scaled identity, diagonal, or block diagonal
– Assumption: independence between particular states/observations
– NBz

state blocks of size Bz and NBy
observation blocks of size By

State transform T, e.g., DFT, and permutation P : z̃n = P (IRT ⊗T) zn

Examples for block diagonal structure:
ID coupling description blocks NBz

Bz

1 full coupling between all states 1 RTL

2 R independent MISO systems R TL

8 fully independent coefficients RTL 1
10 complex: within-receiver TL/2 2R

Savings due to structure and block observation size No compared to [1]:
Storage reduced by factor O (NBz

No)
Complexitya reduced by factor O

N 2
Bz

No



adominant term for matrix-matrix multiplications

Complete
table
→ paper

Bz×Bz

5 Example of M-Step Update Rule
Approach: set derivative of expected log-likelihood w.r.t. parameter to zero

Scaled identity state transition matrix A = aI with a ∈ R yields

a⋆ = tr

Γ−1

N∑
n = 2

E
znzT

n−1



/ tr


Γ−1

N∑
n = 2

E
zn−1zT

n−1



,

corresponding to scalar fading factor in Kalman filtering literature
E-step provides estimates for E

znzT
n−1

 and E
znzT

n



Complete set of update rules for A, Γ, Σ under various assumption→ paper

6 Evaluation: Continuous HRTF Measurements

Compare each µ̂n to one fixed-angle reference measurement z(ref):

SDn = 20 log10



∥∥∥∥∥∥∥µ̂n − z(ref)∥∥∥∥∥∥∥∥∥∥∥∥∥∥z(ref)
n

∥∥∥∥∥∥∥

 dB (system distance)
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Anechoic setup: R=1, T =37, and L=1024⇒ Nz =37888
To reduce complexity assume:

– Independent coefficients (ID 8) for A and Γ in 4 : Bz = 1
– Block size No = 256 (≈ 5.8 ms)

▶ storage reduced by factor 107, complexity reduced by factor 1011
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Semi-anechoic setup: R=2, T =2, and L=4800⇒ Nz =19200
Assume coupling between frequency bins of receivers for A and Γ:

– ID 10 in 4 (Bz = 4), T: DFT, and block size No = 48 (1 ms)

▶ storage reduced by factor 105, complexity reduced by factor 109
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7 Summary
▶ Flexible framework for improved EM-based offline MIMO system identification
▶ Choice of model structure and block sizes determines complexity
▶ Imposing model structure enables addressing wider range of applications
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