A Flexible Framework for Expectation Maximization-Based MIMO System Identification for Time-Variant Linear Acoustic Systems

Tobias Kabzinski and Peter Jax Institute of Communication Systems (IKS)

Introduction

Measurement of thousands of impulse responses (IRs)

- Two approaches: static or **continuous**
- Example: HRTF measurements with rotating listener
- Unconstrained Expectation Maximization (EM) too complex in real world [1] Core idea: impose model structure to reduce parameters and complexity

Signal Model

Problem: for acoustic MIMO system with T loudspeakers and R microphones, estimate $R \cdot T$ length-L IRs offline given inputs $x_t(k)$ and noisy outputs $y_r(k)$:

Example of M-Step Update Rule 5

Approach: set derivative of expected log-likelihood w.r.t. parameter to zero • Scaled identity state transition matrix $\mathbf{A} = a\mathbf{I}$ with $a \in \mathbb{R}$ yields

$$a^{\star} = \operatorname{tr}\left\{\mathbf{\Gamma}^{-1}\sum_{n=2}^{N} \mathbb{E}\left\{\mathbf{z}_{n}\mathbf{z}_{n-1}^{\mathrm{T}}\right\}\right\} / \operatorname{tr}\left\{\mathbf{\Gamma}^{-1}\sum_{n=2}^{N} \mathbb{E}\left\{\mathbf{z}_{n-1}\mathbf{z}_{n-1}^{\mathrm{T}}\right\}\right\},\$$

corresponding to scalar fading factor in Kalman filtering literature

- E-step provides estimates for $\mathbb{E} \{ \mathbf{z}_n \mathbf{z}_{n-1}^{\mathrm{T}} \}$ and $\mathbb{E} \{ \mathbf{z}_n \mathbf{z}_n^{\mathrm{T}} \}$
- Complete set of update rules for $\mathbf{A}, \Gamma, \Sigma$ under various assumption o paper

Evaluation: Continuous HRTF Measurements 6

$$y_r(k) = \sum_{t=1}^T x_t(k) * h_{rt,k}(k) + \nu_r(k), \quad r = 1, \dots, R$$

MIMO block observation model with block size N_o and $k = nN_o$

EM-Based State and Parameter Estimation 3

Given observations $\{\mathbf{y}_1, \ldots, \mathbf{y}_N\}$, jointly estimate states $\{\mathbf{z}_1, \ldots, \mathbf{z}_N\}$ and parameters $\theta = \{A, \Gamma, \Sigma, \mu_0, P_0\}$ by maximizing expected log-likelihood [1, 2]

- **E-step**: maximum-likelihood estimates for state $\hat{\mu}_n$ and error covariance $\hat{\mathbf{V}}_n$
- Kalman filter recursion: $n = 1, \ldots, N$

Compare each $\hat{\mu}_n$ to one fixed-angle reference measurement $\mathbf{z}^{(ref)}$:

$$\mathsf{SD}_n = 20 \log_{10} \left(\frac{\|\hat{\boldsymbol{\mu}}_n - \mathbf{z}^{(\mathsf{ref})}\|}{\|\mathbf{z}_n^{(\mathsf{ref})}\|} \right) \mathsf{dB} \qquad \text{(system distance)}$$

 \blacktriangleright storage reduced by factor 10^7 , complexity reduced by factor 10^{11}

- $\mathbf{P}_{n-1} = \mathbf{A} \mathbf{V}_{n-1} \mathbf{A}^{\mathrm{T}} + \mathbf{\Gamma},$ $\boldsymbol{\mu}_n = \mathbf{A}\boldsymbol{\mu}_{n-1} + \mathbf{K}_n \left(\mathbf{y}_n - \mathbf{C}_n \mathbf{A}\boldsymbol{\mu}_{n-1} \right)$ $\mathbf{K}_{n} = \mathbf{P}_{n-1} \mathbf{C}_{n}^{\mathrm{T}} \left(\mathbf{C}_{n} \mathbf{P}_{n-1} \mathbf{C}_{n}^{\mathrm{T}} + \boldsymbol{\Sigma} \right)^{-1}, \qquad \mathbf{V}_{n} = \left(\mathbf{I}_{N_{z}} - \mathbf{K}_{n} \mathbf{C}_{n} \right) \mathbf{P}_{n-1}$
- Kalman smoother recursion: $n = N, \ldots, 1$

 $\mathbf{J}_n = \mathbf{V}_n \mathbf{A}^{\mathrm{T}} \mathbf{P}_n^{-1}, \quad \hat{\boldsymbol{\mu}}_n = \boldsymbol{\mu}_n + \mathbf{J}_n \left(\hat{\boldsymbol{\mu}}_{n+1} - \mathbf{A} \boldsymbol{\mu}_n \right), \quad \hat{\mathbf{V}}_n = \mathbf{V}_n + \mathbf{J}_n \left(\hat{\mathbf{V}}_{n+1} - \mathbf{P}_n \right) \mathbf{J}_n^{\mathrm{T}}$

• **M-step**: parameter update rules use E-step results

 $\theta_i^{\star} \leftarrow f_i(\hat{\boldsymbol{\mu}}_1, \dots \hat{\boldsymbol{\mu}}_N, \hat{\mathbf{V}}_1, \dots \hat{\mathbf{V}}_N, \dots)$ for $\theta_i \in \boldsymbol{\theta}$

Excessive requirements for signal length $N_x = NN_o$ and state dim. $N_z = RTL$: • Storage $\mathcal{O}(NN_z^2)$ and complexity^{*a*}: $\mathcal{O}(NN_z^3)$

^adominant term for matrix-matrix multiplications

Specialized Model Structures

Ideas:

- Impose structure for parameters: scaled identity, diagonal, or block diagonal
- Assumption: independence between particular states/observations
- N_{B_z} state blocks of size B_z and N_{B_y} observation blocks of size B_y
- State transform T, e.g., DFT, and permutation \mathcal{P} : $\tilde{\mathbf{z}}_n = \mathcal{P}(\mathbf{I}_{RT} \otimes \mathbf{T}) \mathbf{z}_n$

- Semi-anechoic setup: R=2, T=2, and $L=4800 \Rightarrow N_z=19200$
- Assume coupling between frequency bins of receivers for A and Γ :
- ID 10 in 4 ($B_z = 4$), T: DFT, and block size $N_o = 48$ (1 ms)

 \blacktriangleright storage reduced by factor 10^5 , complexity reduced by factor 10^9

Summary

- Flexible framework for improved EM-based offline MIMO system identification
- Choice of model structure and block sizes determines complexity
- Imposing model structure enables addressing wider range of applications

Examples for block diagonal structure:

ID	coupling description	blocks N_{B_z}	B_z	
1	full coupling between all states	1	RTL	Complete
2	R independent MISO systems	R	TL	> table
8	fully independent coefficients	RTL	1	\rightarrow paper
10	complex: within-receiver	TL/2	2R	

Savings due to structure and block observation size N_o compared to [1]: • Storage reduced by factor $\mathcal{O}(N_{B_z}N_o)$ • Complexity^a reduced by factor $\mathcal{O}(N_{B_{\star}}^2 N_o)$

^adominant term for matrix-matrix multiplications

References

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 509806277.

[1] T. Kabzinski and P. Jax, "Towards faster continuous multi-channel HRTF measurements based on learning system models," in Proc. ICASSP 2022, pp. 436-440. [2] C. M. Bishop, *Pattern Recognition and Machine Learning*. Springer, 2006. [3] F. Brinkmann, M. Dinakaran, R. Pelzer, P. Grosche, D. Voss, and S. Weinzierl, "A cross-evaluated database of measured and simulated HRTFs including 3D head meshes, anthropometric features, and headphone impulse responses," J. Audio Eng. Soc., vol. 67, no. 9, pp. 705–718, 2019.

www.iks.rwth-aachen.de

2024 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea