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Introduction

Measurement of thousands of impulse responses (IRs) Wﬁﬁﬂ Approach: set derivative of expected log-likelihood w.r.t. parameter to zero
e Two approaches: static or continuous f e Scaled identity state transition matrix A = al with a € R yields
e Example: HRTF measurements with rotating listener : . X T A T

_ _ - _ a = tril Z 1 {ann_1} /tr I Z J {zn_lzn_l} ,
 Unconstrained Expectation Maximization (EM) too complex in real world [1] o’ -
Core idea: impose model structure to reduce parameters and complexity corresponding to scalar fading factor in Kalman filtering literature

e E-step provides estimates for [E {an;{_l} and £ {ang}

e Complete set of update rules for A, I', 32 under various assumption — paper

Problem: for acoustic MIMO system with T’ loudspeakers and R microphones,
estimate R-T" length-L IRs offline given inputs x;(k) and noisy outputs y,(k):

n Evaluation: Continuous HRTF Measurements

(ref)
Z vy(k) % hy (k) +v(k), r=1,...,R Compare each ji,, to one fixed-angle reference measurement z
t=1 | | | ﬁ’n _ Z(ref) |
MIMO block observation model with block size N, and &k = nN, SD,, = 201og; lZ(ref>| db (system distance)
n
_ 1T I - RRTL .
Zn = [hﬂa th” ' hRT ”} eR state transition matrix A Pprocess noise g, ~ N (0,T") 0
\ — 7 n 5= smaIIer stepS|ze delay —— NLMS (e = 1.0)
~Zy, = AZ, 1+ Qqy (state equation) 2 1l —— NLMS (e = 0.5)
: : S _15] proposed
. =C,z, +v, Mlon equation) B ol
- —= o a) _95 b Iowler: dip: h 10dB ga|n \ identical excitation:
observation ¥ector observation matrix C,, observation noise v, ~ N (0, X) o M esl mlatc ~ (i) neer sweep
V= yEn y%)n] c RN with realizes convolution 248 249 25() 251 259

N, samples of y,(k) per receiver  with input signals x4(k) time / s = rotation angle

e Anechoic setup: R=1, T'=37, and L=1024 = N,=37888

e To reduce complexity assume:

EM-Based State and Parameter Estimation
— Independent coefficients (ID 8) for A and T in : B, =1

Example 1: HUTUBS Database [3]

Given observations {yi,...,yn}, jointly estimate states {z;,...,zx} anc
parameters 0 ={A T, X, iy, Py} by maximizing expected log-likelihood [1, 2 — Block size N, = 256 (=~ 5.8 ms)
o E-step: maximum-likelihood estimates for state fi,, and error covariance V., » storage reduced by factor 107, complexity reduced by factor 10!
— Kalman filter recursion: n=1,... N
o —25 .
P, = AVn—lAT + T, w,=Ap, _ +K, (Yn — C,Au _1> 4(1_»3) N - headtracker delay —— NLMS (E = 1.0)
K,—P, CT(CP, ,CT+%) . V,—(Iy K.C,)P n A IR = proposec
n— & n-l n( ntn—10Cp T ) ) n = Iy, = K Co) Py § < 35 4dB gain | expected match
— Kalman smoother recursion: n =N, ..., 1 =1 ° » l : \[™identical excitation:
J -V, ATp- A=+ ] (ﬂ A ) Vv L3 (‘,\/_ _p )JT 2 O\ 0.5 noise-like perfect sequence
n n n n n+1 ), n n n n+1 nlIn " £ ,
o = : .
e M-step: parameter update rules use E-step results el £ _o; _————— constant angular velocity
1 B 13 13.5 14
A A A\ A LIJ .
0 < filfy, .. oy, Vi,...Vy,...| for 6;€6 time / s

Excessive requirements for signal length N, = NN, and state dim. N,=RT L: * Semi-anechoic setup: i=2, T'=2, and L=4800 = N.=19200
e Storage O (NNZQ) and complexity: O (NNZS) e Assume coupling between frequency bins of receivers for A and I':

— ID 10 in (B, =4), T: DFT, and block size N, = 48 (1 ms)

dominant term for matrix-matrix multiplications

» storage reduced by factor 10°, complexity reduced by factor 10”

n Specialized Model Structures

ldeas:

Summary

o | tructure f ters: scaled identity, di |, or block di | .
TPOSE SHIUCEIIE TOT PArIiEtels. sealed [CEntRy, Clagtid], O DIOCR flagons » Flexible framework for improved EM-based offline MIMO system identification

— Assumption: independence between particular states/observations . . . .
» Choice of model structure and block sizes determines complexity

— INp_state blocks of size B, and Np observation blocks of size B,

| _ » Imposing model structure enables addressing wider range of applications
e State transform T, e.g., DFT, and permutation P: z, =P (Igpr ® T) z

Examples for block diagonal structure:
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