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ABSTRACT

The last standard Versatile Video Codec (VVC) aims to im-
prove the compression efficiency by saving around 50% of
bitrate at the same quality compared to its predecessor High
Efficiency Video Codec (HEVC). However, this comes with
higher encoding complexity mainly due to a much larger
number of block splits to be tested on the encoder side. This
paper proposes an acceleration of the VVC partitioning based
on a multi-output regression model that predicts a suitable
split mode for 32 x 32 Coding Unit (CU). Experimental re-
sults show that our approach improves complexity trade-offs
flexibility while adding better complexity trade-offs points
compared to the original encoder.

Index Terms— Video compression, deep learning, multi-
output regression.

1. INTRODUCTION

The rapid proliferation of video content driven by increasing
online platforms, streaming services, and user-generated con-
tent, leads to an unprecedented surge in video traffic. This
explosion in video consumption poses significant challenges
and causes a crucial need for novel coding techniques. The
Joint Video Experts Team (JVET) tackles this problem by in-
troducing the new standardized video codec VVC [1], and
its reference software VVC Test Model (VTM) used to im-
plement and test the coding tools defined by the VVC stan-
dard. The encoding process can be considered as a com-
binatorial optimization problem and involves several stages:
frame partitioning, intra/inter prediction, transform, quanti-
zation, and entropy coding. This work addresses the parti-
tioning part in intra coded slice at the encoder side. In this
paper, we propose a regression-based complexity reduction
method for VVC tackling the exhaustive Rate-Distortion Op-
timization (RDO) search. This technique relies on a Convo-
lIutional Neural Network (CNN) that takes a 32 x 32 CU of
the luma component and the associated Quantization Param-
eter (QP) to return a vector containing 6 rate-distortion costs,
one for each split mode. Then, n < 6 split modes can be
tested on this CU via RDO, n depending on pre-determined

thresholds. Section 2 presents the state-of-the-art (SOTA) on
partitioning speed-ups at the encoder side. Section 3 details
the proposed multi-output regression model. Section 4 shows
the mean BD-rate versus encoding complexity trade-offs of
VVC with our model. Finally, Section 5 concludes the paper.

2. BACKGROUND

2.1. Encoding complexity

The input video sequence is divided into frames, and each
frame is recursively split into blocks. In HEVC [2], each
frame is divided into Coding Tree Units (CTUs). As a given
CTU/CU can only be split into 4 non-overlapping square sub-
CUs of same size, a.k.a Quad-Tree (QT) split, the recursive
split of a CTU yields square CUs of potentially various sizes.
For instance, in HEVC, for an intra slice, a full causal RDO
on a 64 x 64 CTU tests at most 341 blocks. This corresponds
to the reconstruction of 20480 pixels per mode tested. In ad-
dition to QT and no split, VVC allows the partition of a CU
into rectangular sub-CUs via Multi-Type Tree (MTT). MTT
comprises Binary Tree (BT) and Ternary Tree (TT). In BT,
the CU is divided into 2 non-overlapping sub-CUs of same
size, supporting both horizontal (BTH) and vertical (BTV)
splits. In TT, the CU is divided into 3 non-overlapping sub-
CUs with size ratio 1:2:1, supporting both horizontal (TTH)
and vertical (TTV) splits. For example, in VVC, for an intra
slice, a full causal RDO on a 64 x 64 CTU tests at most 721k
blocks. This corresponds to the reconstruction of 19\ pixels
per mode tested. Thus, from the HEVC encoder to the VVC
encoder, for worst cases, ~ 2000 times more blocks are to be
tested and ~ 1000 times more pixels are to be reconstructed.

2.2. Related works

Researchers have already addressed the high complexity of
the RDO via classification-based solutions. These solutions
are presented in two groups, those viewed as supervised learn-
ing involving Convolutional Neural Networks (CNNs) and
the others (based on either heuristics or Reinforcement Learn-
ing (RL)). Our proposition belongs to the first group.



Regarding the first group, in HEVC, Xu et al. [3] create
an Early Terminated Hierarchical CNN that returns 21 pre-
dictions mapping the CTU/CU splits. In VP9 [4], Mukher-
jee et al. [5] design a Hierarchical Fully Convolutional Net-
work predicting macro-block partition trees via a bottom-up
approach. In HEVC with QTBT (HEVC with enhanced par-
titioning, prior to VVC) Galpin et al. [6] introduce a CNN
analyzing the texture of a block, either luma or chroma com-
ponent, to predict possible sub-block splits. For instance, in
luma, the CNN is fed with the luma component of a 64 x 64
CU along with one-line left and above borders, forming a
65 x 65 input, plus QP, to return the probabilities of the 480
boundaries associated to each 4 x 4 sub-block. These bound-
ary probabilities are turned into decisions of skipping split
tests via hand-crafted heuristics. In VVC, Li et al. [7] propose
a Multi-Stage Exit CNN combined with an early-exit mecha-
nism to determine the CU partition. In VVC, Tissier et al. [8]
build upon [6], replacing the hand-crafted heuristics by a de-
cision tree. Finally, Feng et al. [9], propose a Down-Up-CNN
to predict a partition map of an input block of 64 x 64 in VVC
intra configuration. Note that, unlike [3, 5-9], our proposed
approach relies on regression-based training.

Regarding the second group, in VVC, Qiang et al. [10]
employ an algorithm for fast QTMTT based on the Scharr
operator-derived gradient for texture description and sub-
block edge difference for structural information. In HEVC,
Na et al. [11] developed an early termination classifier trained
using trajectories of CU decisions at varying depths. This is
achieved through an end-to-end actor-critic RL algorithm,
rendering the classifier depth-independent. In [12], the au-
thors employ Deep Reinforcement Learning (DRL) to opti-
mize the decision process of 32 x 32 CUs in VVC.

3. PROPOSED APPROACH

3.1. Motivations

In VVC, for an intra slice, the largest CU is 128 x 128, initially
forcefully divided by QT into 4 64 x 64 CUs. Statistically, the
split decisions on 32 x 32 CUs appear to be the most crucial.
Indeed, for a larger CU, the split tends to be QT while, for
smaller CUs, the number of combinations to be tested tend to
be smaller than that for 32 x 32 CUs. Therefore, this study
focuses on the prediction of the splits of 32 x 32 CUs.
Compared to previous works, our approach targets the
prediction of a variable computed before the split decision.
Indeed, instead of predicting the split decision, normalized
RD costs are predicted. This gives higher flexibility to decide
the split strategy. For instance, the differences in RD costs of
different splits can help evaluate which splits to explore. Un-
like classification task, with jumps from one class to another,
the training by regressing on RD costs must better reflect the
smoothness of the relative evolutions of the RD costs by vary-
ing texture and coding parameters. As illustration, Fig. 1 re-

veals the smoothness of the relative evolutions of the RD costs
w.r.t. QP. It shows the evolution of the RD cost with QP for
each split mode on a particular 32 x 32 block. At high bitrate,
i.e. low QP, the best split mode is QT. But, at low bitrate, i.e.
high QP, BTV surpasses QT as best split mode. Finally, at
very low bitrate, No Split (NS) becomes the best split mode.

Relative Rate-Distortion cost to no split

Fig. 1. Rate-distortion costs of a 32 x 32 CU for each splitting
mode at different quantization parameters values. NS RD-
cost is subtracted from all RD-costs.

3.2. Design and training

The proposed method is a CNN-based acceleration technique.
A deep learning model takes a 32 x 32 CU to predict 6 RD
cost values, one for each split mode in { NS, QT, BTH, BTV,
TTH, TTV }. The model can be integrated at the encoder
side of a hybrid-block-based video codec to skip unnecessary
split modes evaluation, hence accelerating the RDO process.
Fig. 2 shows the diagram of the proposed method. The CNN
architecture is inspired by ResNet [13], being composed of
convolutional layers with a kernel size of 3 x 3 followed by
a ReLU activation function and maxpooling layers. The Con-
vBlock is made of 4 3 x 3 convolutional layers with n filters
and one shortcut connection, see Fig. 2(b). After the last max-
pooling layer, the QP value is concatenated with the resulting
vector. Then, the model produces 6 outputs which represent
the normalized RD cost of each split. The model contains
~ 100k parameters, making it relatively light and fast at in-
ference time.

The training dataset is generated through intra-mode en-
coding configuration of BVI-DVC sequences [14] utilizing
VTM 18.0. Two versions are tested: the default RDO and
the RDO with heuristics related to splits of 32 x 32 blocks
deactivated (i.e. all partitioning modes on a 32 x 32 CU are
tested). Each encoding is conducted across 4 QPs: 22, 27, 32
and 37. With 800 sequences, a balanced dataset of more than
6 million patches (1 million samples per split mode) is gener-
ated. The 32 x 32 CU of index ¢ is represented by a 36 x 36
patch z?, encompassing the block itself and a 4-pixel-wide
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Fig. 2. (a) CNN model architecture overview. (b) Details the ConvBlock layers

causal border. Additionally, the QP, denoted :1721, of the CU of
index ¢ is extracted. The ground truth vector y; corresponds
to the RD costs selection determined by the RDO process ap-
plied to the 32 x 32 CU of index 7. y; stores 6 values, one RD
cost for each tested split mode.

The normalization of ground truth values in continuous
regression tasks is a crucial step. Thus, in our work, for the
example of index ¢, the ground-truth y; ; is a vector of 6 RD
costs normalized by the NS RD cost y; o, see Eq. (1).

Yij = y”

j € [10,5]. (D

4,0
J indexes the 6 split modes. For the example of index i, y; ;
denotes the original RD cost.

The function fy, parameterized by 6, defines the CNN. fy
takes 7 and x} to calculate a prediction g; of the 6 normal-
ized RD costs, see Eq. (2).

i = fo(z?, x}) 2)

During the training step, a loss function £ computes the error

between the predicted vector of RD costs and the ground-truth
vector of normalized RD costs, averaged over all examples,
plus a regularization term corresponding to the L2 norm of
the weights W of the CNN, W C 0, see Eq. (3).

1 N—-1 K
L(D:0) =5 D (Wi~ folad )+ A3 WE (3)
1=0 k=1

N denotes the total number of examples in the training set
D = {(a0,28,9}) - (#X_1,2N_1,¥_1)}. K denotes
the total number of weights of the CNN. The CNN is trained
within the Pytorch deep learning framework. The Adam opti-
mizer is employed with a learning rate of 10~%, \ regulariza-
tion factor of 10~°, and a batch size of 256. Model training
spanned 10 epochs and is completed in 4 hours, using a single
GPU (NVIDIA Tesla V100 16GB).

4. EXPERIMENTAL RESULTS

Our method is compared with VIM 18.0 by considering two
main setups (with and without heuristics) and several MTT

depths, see Fig. 3, which correspond to several complex-
ity points of the encoder. The values 1, 2, 3 and 4 corre-
spond to the maximum MTT Hierarchy Depth of the luma
blocks. The first setup represents the anchor where the de-
fault VTM heuristics are activated for 32 x 32 CUs to gener-
ate the database using BVI-DVC sequences [14] as discussed
in Section 3 and using the default MTT depth of 3 to train the
CNN. In this setup, as the heuristics are activated, the VITM
sometimes skips certain partitioning modes, leading to miss-
ing cost values in our labels in the training dataset. To fill in
the missing values, we replace a missing value by the maxi-
mum value multiplied by a constant « (for instance o = 2).
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Fig. 3. BD-rate versus complexity speedup ratio comparison
in All Intra (AI) configuration with three MTT depth config-
urations with/without activating heuristics for 32 x 32 CUs.

Thanks to this penalty, the model predicts relatively high
costs for non tested splits. In the second setup, the heuris-
tics are deactivated for 32 x 32 CUs, allowing the VIM to
test all split modes. In this case, there is no missing infor-
mation when generating the training dataset using the default
MTT depth of 3 and, for each sample, all cost values exist.
The same architecture illustrated in Fig. 2 is used to train the
models of both setups using the appropriate training dataset
for each CNN model. The model trained on dataset with
heuristics activated is integrated in the first setup while the



Table 1. AC and bd-rate results of the first setup model in Al
coding and default MTT depth configuration

Class Sequence bd-rate% AC%
Tango2 1,41 59,49

Class Al FoodMarket4 1,61 57,23
Campfire 0,63 59,37

Average 1,22 58,70

CatRobotl 0,94 57,72

Class A2 DaylightRoad2 1,41 55,68
ParkRunning3 0,71 59,34

Average 1,02 57,58

MarketPlace 1,15 58,29

RitualDance 1,17 56,06

Class B Cactus 0,97 58,71
BasketballDrive 1,95 56,79

BQTerrace 0,74 64,49

Average 1,20 58,87

RaceHorses 0,44 60,15

Class C BQMall 0,85 57,98
PartyScene 0,28 63,73

BasketballDrill 0,78 59,33

Average 0,59 60,30

RaceHorses 0,26 66,91

Class D BQSquare 0,39 69,73
BlowingBubbles 0,13 67,97
BasketballPass 091 61,92

Average 0,42 66,63

Average A-B-C-D 0,88 60,57

FourPeople 1,22 56,49

Class E Johnny 1,16 59,38
KristenAndSara 0,85 59,11

Average 1,08 58,33

TencentAOV5 1,00 57,89

Class F BasketBallDrill Text 0,80 59,84
SlideEditing 0,92 62,81

SlideShow 0,90 61,19

Average 0,90 60,43

Average A-B-C-D-E-F 0,91 60,29

second model trained on dataset without heuristics is inte-
grated in the second setup after converting them from torch
model to SADL model [15]. The SADL implementation al-
lows a stand-alone integration of the model in the codec.

During the inference, for each 32x 32 CU, the models pre-
dict 6 RD cost values and the final set of splitting modes to
be checked by the classical RDO process is selected. The pre-
dicted values are compared by taking the splitting modes with
costs lower than a given threshold, which can be changed. For
each threshold, this gives a BD-rate loss and a speed-up com-
pared to the anchor. Test sequences from the JVET Common
Test Conditions [16] are used to evaluate our approach in-
cluding all classes (i.e. class A to class F). The complexity
reduction is considered as the difference of the total number
of treated pixels during the encoding process with and without
the CNN model and is calculated as follows:

1 T.(QP,) — T,(QP)
AC= Z Z Ta(QPi)
QP;€{22,27,32,37}

“

where T,(QF;),T,(QF;) are the complexities with and
without the model integrated, respectively. Table 1. summa-
rizes the BD-rate loss and complexity ratio for each sequence.

Fig. 3 shows the speed up ratio versus the BD-rate loss of
the two setups with and without the models at three MTT con-
figurations. The dashed line in black represents the first an-
chor with activated heuristics whereas the dashed line in blue
refers to the second anchor without activating the heuristics.
The red crosses represent our approach with the heuristics ac-
tivated whereas the green crosses represent our method with-
out activating heuristics. Our solution enables the inclusion of
intermediate trade-offs when compared to a basic MTT depth.

One can notice that, several SOTA methods usually eval-
uate their approach at only one complexity point (typically
the point of default depth 3, see Table 1). However, for lower
complexity, for example a 2 times speed-up w.r.t. anchor, the
point of depth 2 already has a trade-off of 50% complexity
for a BD-rate loss of ~ 1.1%, which is close to several SOTA
results [7] [8].

The complexity reduction varies from 43% to 10% for
0.96% and 0.15% as BD-rate loss respectively in MTT depth
of 3 for the first setup with the model compared to the model
without heuristics which can do the same as the first anchor
with the heuristics activated with a complexity reduction of
15% for 0.35% of BD-rate loss.

Based on the two setups, our approach with activated
heuristics can accelerate the RDO process while maintaining
the existing heuristics with a maximum complexity reduction
of 43% for 0.96% BD-rate loss in MTT depth of 3. The
model of the second setup allows for the addition of extra
points within the gaps between MTT depth transitions and
can achieve the performance of the anchor with activated
heuristics at MTT depth of 3 with 15% complexity reduction
for 0.35% BD-rate loss.

Finally, both models are trained on datasets with a de-
fault MTT depth of 3, enabling their applicability to other
MTT depths for generating new trade-offs and accelerating
the RDO process.

5. CONCLUSION

This paper proposes the first rate-distortion cost regression-
based approach to speedup the rate-distortion search on top of
VTM-18.0. In this approach, a CNN predicts rate-distortion
costs of all split modes of the current inputs. The regres-
sion can help the model get relative understanding between
the predicted rate-distortion costs and choose a suitable split.

Experimental results show that the generation of a com-
plete dataset without heuristics (all costs are available) can be
efficient for the CNN training step and help in getting addi-
tional complexity trade-offs during the inference step.

Finally, combining our CNN models with the associated
setup can speedup the RDO process at different complexity
trade-offs, for example at different MTT depths.
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