CHI – Chair of Health Informatics TUM School of Medicine and Health Technical University of Munich

EXPLORING META INFORMATION FOR AUDIO-BASED ZERO-SHOT BIRD CLASSIFICATION

Alexander Gebhard^{1,2}, Andreas Triantafyllopoulos^{1,2}, Teresa Bez², Lukas Christ², Alexander Kathan², Björn W. Schuller^{1,2,3}

¹CHI – Chair of Health Informatics, MRI, Technical University of Munich, Germany ²Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany ³GLAM – Group on Language, Audio, & Music, Imperial College London, UK

Motivation

- > Plethora of audio recordings for bioacoustics
- Experts have limited time and resources
- Utilisation of only auxiliary information could help
- > Annotation of recorded data without previous labelling effort
- > Beneficial for data scarcity and underrepresented species
- > Good availability of rich and diverse meta information of birds

Dataset

- > 95 European bird species based on Jung et al. [1]
- Audio data gathered from Xeno-Canto in MP3 format ~ ~725 hours
- > Textual descriptions of bird sounds [2]
 - Example for phoenicurus ochruros (black redstart):

"Call a straight, slightly sharp whistle, 'vist', often repeated impatiently. When highly agitated, a discreet clicking is added, 'vist, tk-tk-tk'. Song loud, frequently given at first light from high perch, usually consists of four parts: starts with a few whistles and a rattling repetition of same note, followed by a pause c. 2 sec. long, then a peculiar crackling sound (not very far-carrying), after which the verse terminates with some brief whistled notes, e. g. 'si-srü TILL-ILL-ILL-ILL-ILL-ILL..... (krschkrschkrsch) SRÜsvisvi'; the sequence of the four components may sometimes be switched around."

> Functional traits

• AVONET [3]: ecological parameters, continuous morphological

Features

Audio

- > Audio spectrogram transformer (AST) embeddings
- ➤ Resample audio to 16kHz
- > Average 2D features over time \Rightarrow vector with size 768 **Textual**
- ➢ BERT [5] and Semantic BERT (SBERT) [6]
- > Both with an embedding vector size of 768

Functional

- > String labels are encoded to numerical values
- \succ Scaling values to the range [0, 1] via min/max normalisation

Textual features - cosine similarity

- traits, and information on range and location, etc.
- **Bird life-history** (BLH) [4]: morphological, reproductive, behavioural, dietary, and habitat preference characteristics, etc.

SBERT creates stronger distinctions \Rightarrow we expect a better performance

Experimental Setup

- Non-exhaustive five fold cross-validation with a training (80%), development (10%), and test (10%) set
- > The **dev** and **test** sets among the splits are **disjoint**

> Training

- 30 epochs
- Stochastic gradient descent (SGD) optimiser
- \circ Learning rate of .0001
- \circ Batch size of 16
- > Evaluation metric is **unweighted F1-score**

Results

- > Mean results over the five development (Dev) and test (Test) splits
- > **Best** performance is marked **bold**, the *second best* is marked *italic*

> Displayed metrics

- Accuracy (ACC)
- Unweighted average recall (UAR)

Zero-Shot Bird Classification

- > Applying a **compatibility function** to an **acoustic-semantic projection**
 - Project the acoustic embeddings to the class embeddings with a single linear layer
 - **Dot product** as compatibility function
- Standard zero-shot learning **ranking hinge loss** based on [7]
- Goal: The highest ranked class embeddings best describe the audio sample, so that the class with the highest compatibility is considered as the correct prediction

Unweighted F1-score (F1)

Main evaluation metric is the F1-score

	Dev			Test		
Embeddings	ACC	UAR	F1	ACC	UAR	F1
Bert	.220	.195	.169	.188	.208	.167
AVONET	.372	.298	.262	.267	.215	.191
BLH	.384	.288	.265	.289	.286	.221
SBERT	.306	.238	.219	.197	.185	.163
BERT+AVONET+BLH	.181	.175	.154	.175	.168	.151
Bert+Avonet	.254	.193	.178	.169	.158	.141
BERT+BLH	.198	.183	.164	.164	.178	.141
AVONET+BLH	.335	.281	.244	.287	.295	.233

Conclusion

- > The functional traits outperformed the encoded bird sound descriptions
- > Concatenation of AVONET and BLH achieve the best performance
- Bird-specific onomatopoeic words/sentences might be a problem for the pre-trained language models

References

[1] K. Jung, et al., Bird survey data 2012, all 300 eps, Dataset. Published. Version 2, Dataset ID: 24690, 2020.
[2] L. Svensson, et al., Birds of Europe (Princeton Field Guides), 2nd ed. Princeton University Press, Feb. 2010, 448 pages, ISBN: 978-0691143927.
[3] J. A. Tobias, et al., "Avonet: Morphological, ecological and geographical data for all birds," Ecology Letters, vol. 25, no. 3, pp. 581–597, 2022.
[4] L. Storchová and D. Horák, Data from: Life-history characteristics of european birds, https://doi.org/10.5061/dryad.n6k3n, Dryad, Dataset, 2018.
[5] J. Devlin, et al., "BERT: Pre-training of deep bidirectional transformers for language understanding," in Proc. of the 2019 NAACL-HLT, Volume 1, Minneapolis, Minnesota: ACL, 2019, pp. 4171–4186.

[6] N. Reimers and I. Gurevych, "Sentence-bert: Sentence embeddings using siamese bert-networks," in Proc. of the 2019 EMNLP, ACL, Nov. 2019.
 [7] H. Xie and T. Virtanen, "Zero-shot audio classification via semantic embeddings," IEEE/ACM TASLP, vol. 29, pp. 1233–1242, 2021