

CLINICAL SCORES PREDICRTION AND MEDICATION ADJUSTMENT FOR PARKINSON'S DISEASE

Han Chen^{*}, Wenxuan Wu^{*}, Xiaofen Xing^{*}, Xiangmin Xu^{*} * South China University of Technology, GuangZhou, China

INTRODUCTION

Parkinson's Disease (PD) is the second most prevalent neurodegenerative disorder worldwide, characterized by progressive motor and non-motor symptoms^[1]. Unfortunately, there are no definitive PD modifying therapies, so accurate course prediction in advance and appropriate medical adjustment are essential to slow down degenerative process from onset^[2]. This work addresses a novel challenge in PD course prediction specifically at month 60 (m60) of

AIM

Given a specific PD patient n, UD^n and MC^n at m60 are predicted utilizing data including MRI M_t^n , age A_t^n , motor symptoms O_t^n , medication type T_t^n and dose D_t^n with year t from onset (baseline/bl) to month 48 (m48),

both motor and non-motor indicator utilizing Magnetic Resonance Imaging (MRI) and

demographic data of previous years.

METHOD

Backbone for Serial MRIs Basic 3D ResNet18 is utilized as the backbone intersperse with 3D extensional BAM (Bottle Attention Module^[3]) for time series attention and SAM (Shuffle Attention Module^[4]) for disrupting spatial channels.

Generative Decoder

MRI serial features concatenates with

motor and mediaction feature.

Composite features are padded with zeros on total feature dimension, not just in time dimension for better fusion and modality effectiveness. $X_{dc} = Concat(X_{ec}, 0) \in \mathbb{R}^{N,(T+t) \times H,1}$ For calculation reduction, only top-u query will be employed in the first attention layer.

Fig. 1 The framework of our proposed method. (a) Parkinson's Disease Course Prediction network with image and non-image data. (b) MRI backbone combined with 3D ResNet18, 3D BAM and 3D SA. (C) Medication adjustment network with Dueling Double Deep Q-Network.

Medication Adjustment Module

Employing UD_t^n and MC_t^n for subjects **n** at timestep **t** as state vector S_t in the Markov Decision Processes (MDP). Discrete action space *A* with five type medications. Reward R is calculated by the change of state. Dueling Double Deep Q Network is applied to stimulate medication usage policy and decoder with same structure in prediction network is utilized for course continuation.

RESULTS

Table 1. Results for MoCA and UPDRS-III values in m60						
Modal	Series	Indicator	RMSE	MAE	CC	
MRI Medication	bl+ m12	MoCA	1.434 ± 0.1848	1.241 ± 0.1848	0.7578	
		UP-III	5.866 ± 1.599	4.430 ± 1.254	0.1982	
	bl+ m24	MoCA	1.804 ± 0.2236	1.564 ± 0.2149	0.6715	
		UP-III	4.051 ± 0.4346	3.225 ± 0.4256	0.3344	
	bl+ m48	MoCA	1.370 ± 0.2737	1.159 ± 0.2149	0.8409	
		UP-III	$3.806{\pm}\ 0.4346$	3.200 ± 0.425	0.4529	
MRI Non-image Medication	bl+ m12	MoCA	1.308 ± 0.1441	1.059 ± 0.1776	0.8278	
		UP-III	5.638 ± 1.245	4.421 ± 0.9830	0.3149	
	bl+ m24	MoCA	1.398 ± 0.1314	1.200 ± 0.1198	0.7954	
		UP-III	$\textbf{3.764} \pm \textbf{0.4042}$	$\textbf{3.159} \pm \textbf{0.4240}$	0.5282	
	bl+ m48	MoCA	$\textbf{1.246} \pm \textbf{0.2835}$	$\textbf{1.052} \pm \textbf{0.2687}$	0.8586	
		UP-III	4.220 ± 0.1580	3.540 ± 0.3900	0.3663	

Tab	Table 2. Comparisons with other course prediction methods.						
	Ref	Modal	Subject Number	Time Step	MoCA (MAE)	UP-III (MAE)	
	[19]	MRI	238	BL M12 M24	2.348 1.943 1.641	- -	
	[20]	MRI	213	M48	2.110	-	
	[21]	DAT-SPECT Clinical Data	198	M48	-	4.700	
	[22]	DAT-SPECT	198	M48	-	4.330	
	[22]	DAT-SPECT Age UP-III Gene	198	M 48	-	3.220	
	Ours	MRI	107	M60	1.159	3.200	
	Ours	Medication Age MRI Motor	107	M60	1.052	3.159	

CONCLUSIONS

We propose a method to predict PD course based on MRI, motor and medications features. Medication simulation with

* UP-III: UPDRS-III bl: baseline, m12: month 12 (same as m24,m48)

*DAT-SPECT: Dopamine-transporter spectrum

course prediction based on RL is carried out for better adaptation to individuals, which corroborate with former prediction network but need for continuous improvement.

REFERENCES

[19]doi:10.1109/TNNLS.2021.3052652.
[20]doi:10.1038/s41598-023-37644-6.
[21]doi:10.1186/s13550-021-00795-6.
[22]doi:10.1109/NSSMIC.2018.8824432

ACKNOWLEDGE

This work is supported by the Guangdong Provincial Key Laboratory of Human Digital Twin (2022B1212010004).