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ABSTRACT

Self-supervised learning models have revolutionized the field
of speech processing. However, the process of fine-tuning
these models on downstream tasks requires substantial com-
putational resources, particularly when dealing with multiple
speech-processing tasks. In this paper, we explore the poten-
tial of adapter-based fine-tuning in developing a unified model
capable of effectively handling multiple spoken language pro-
cessing tasks. The tasks we investigate are Automatic Speech
Recognition, Phoneme Recognition, Intent Classification,
Slot Filling, and Spoken Emotion Recognition. We validate
our approach through a series of experiments on the SUPERB
benchmark, and our results indicate that adapter-based fine-
tuning enables a single encoder-decoder model to perform
multiple speech processing tasks with an average improve-
ment of 18.4 % across the five target tasks while staying
efficient in terms of parameter updates.

Index Terms— Spoken Language Processing, Multitask
Learning, Adapters, Self-supervised Models

1. INTRODUCTION

The fine-tuning of self-supervised learning (SSL) models,
such as wav2vec 2.0 [1], has improved the performance
of Spoken Language Processing (SLP) tasks. However, as
the quality of representations generated by these models
improves, there is a corresponding increase in their size, ne-
cessitating additional storage and computational resources.
This issue becomes particularly pronounced when dealing
with multiple speech-processing tasks, with each target task
requiring separate model fine-tuning, further increasing the
need for resources.

Modular architectures, such as adapters, have been widely
used in NLP to tackle both parameter efficiency and multi-
tasking [2]. While adapter-based fine-tuning has been utilized
in speech-related tasks, such as speech translation [3, 4, 5] and
domain adaptation [6], its efficiency in developing a unified
model capable of handling multiple Spoken Language Pro-
cessing (SLP) tasks remains relatively unexplored. Existing
attempts to model multiple SLP tasks with a single model
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utilises task-specific decoders [7]. However, this approach
becomes less scalable as the number of tasks increases.

In this work, we aim to develop a scalable and parameter-
efficient unified encoder-decoder model to effectively handle
multiple spoken language processing (SLP) tasks. For this,
we use adapters [2], which allows new tasks to be added with-
out the need to re-train the entire model and which also mit-
igates the need for dedicated decoders [7]. Moreover, since
adapters facilitate Multi-Task Learning (MTL), we investi-
gate two approaches: Stacking [8] and Fusion [9], in addition
to single-task adapters. To evaluate our approach, we choose
five speech-processing tasks from the SUPERB benchmark
[7]: Automatic Speech Recognition (ASR), Phoneme Recog-
nition (PR), Intent Classification (IC), Slot Filing (SF), and
Spoken Emotion Recognition (ER). The detailed model de-
scription is provided in Figure 1. From our experiments, we
observed that adapter-based fine-tuning outperformed the SU-
PERB benchmark with an average improvement of 18.4 %
achieved across 5 target tasks. We summarise our contribu-
tions below:

• We investigate the feasibility and efficiency of using
adapters to build a unified encoder-decoder model that
can tackle multiple spoken language processing tasks
in a simple and scalable manner.

• We explore multi-task learning within our unified
framework with two methods: stacking and fusion,
which combine adapters to enhance the performance of
positively correlated tasks.

2. RELATED WORK

In the field of NLP, researchers have used a single model to
handle multiple tasks and adapt them to different domains
[10]. In the speech domain, most approaches that deal with
multiple tasks fall under multi-task models. They either focus
on improving a primary task by using auxiliary tasks, like per-
forming ASR to enhance Emotion Recognition [11, 12, 13],
or simultaneously perform multiple tasks —slot-filling and
intent classification [14], ASR and speech translation [15, 16]
etc. However, these approaches are not easily scalable for
new tasks and are mostly applied for tasks that are known to
be positively correlated.
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Fig. 1. Left: Overall model architecture with a unified encoder-decoder model with adapter-based task modules on each
transformer layer. Right: Three types of adapter-based task modules used.

Some studies have aimed to create a unified model for
multiple speech-processing tasks by training different mod-
ules and composing them to perform each task. These archi-
tectures comprise encoders and decoders trained to capture
features from different modalities, such as text and speech
[17], or speech characteristics like prosody [18] etc. In con-
trast, our approach focuses on constructing task-specific mod-
ular architectures. Furthermore, adding a task is straightfor-
ward as these task-specific modules are trained independently.

Our work is inspired by SUPERB [7], where multiple
tasks are modeled using pre-trained frozen encoders (such
as wav2vec 2.0) and task-specific decoders, the task perfor-
mance relying on the type of decoder used for the task [19].
However, this approach does not scale well as the number of
tasks increases. Instead, in our work, we aim to develop a
single encoder-decoder model and show that adapters on the
decoder side help us adapt to different types of tasks (both
classification and generative) without the need for dedicated
decoders.

3. MODEL ARCHITECTURE

3.1. Pre-trained Encoder-Decoder model

We use wav2vec 2.0-large1 as encoder and a 6-layer trans-
former decoder which is randomly initialized. We fine-
tuned this encoder-decoder model on the LibriSpeech 100-hr
dataset [20] for the ASR task using hybrid CTC/attention
objective [21] as the base model for our unified model. We
use SentencePiece (BPE) vocabulary of size 5000. This base

1https://huggingface.co/facebook/
wav2vec2-large-lv60

model achieved a word error rate (WER) of 3.54 on the test-
clean split of LibriSpeech which is comparable to the 3.1
WER reported in the SUPERB benchmark.

3.2. Adapter-based Task Modules

To enable the above-mentioned pre-trained encoder-decoder
model to perform multiple SLP tasks, we insert task-specific
adapter modules into the transformer [25] layers of both the
encoder and the decoder. These modules are depicted in Fig-
ure 1. The remainder of the model is frozen.

We focus on three types of architecture: i) single adapter
ii) adapter stacking, and iii) adapter fusion as shown on the
right side of Figure 1. In the standard setting, a single adapter
is trained for each task [2]. However, some SLP tasks are
known to benefit from MTL, such as performing ASR and
emotion recognition [12, 13] and Intent classification and
Slot-filling [26]. As adapters naturally support MTL [2] in
addition to using a single adapter per task, we use the adapter
stacking [8] and adapter fusion settings (same as the fast
fusion setting in [9]) to perform positively correlated tasks
together.

To facilitate a unified model, we encompass both classi-
fication (e.g., emotion recognition) and generative (e.g., slot
filling) SLP tasks into this single encoder-decoder model. To
achieve this, we model the classification task as a generative
task i.e., the classification labels are generated. To accommo-
date multiple tasks using a single decoder output, some task-
specific tokens are allocated in the vocabulary—slot value for
SF task, emotion labels for ER task, etc. These tokens are se-
lected from the least frequently used tokens in the vocabulary.
For MTL, we combine the ground truth of the tasks involved
using a task separator token. For example, to perform ASR
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LibriSpeech IEMOCAP SNIPS FSC
ASR

(WER ↓)
PR

(PER ↓)
ER

(Acc % ↑)
IC

(Acc % ↑)
SF

(F1 ↑,CER ↓)
IC

(Acc % ↑) Avg

WavLM large SUPERB [7] 3.4 3.1 70.6 - 92.2, 18.4 99.0 89.5
wav2vec2.0 large SUPERB [7] 3.1 4.7 65.6 - 87.1, 27.3 95.2 85.5
wav2vec2.0 large (Ours) 3.5 2.4 68.2 99.1 95.4, 11.8 99.5 90.9

Table 1. Performance comparison in various speech processing tasks from the SUPERB benchmark. WavLM is currently
ranked first in SUPERB’s leaderboard and we choose wav2vec2-large to compare multi-decoder (SUPERB) and single decoder
(Ours) solutions. Models from SUPERB have different decoder implementations for each task (e.g. Bi-LSTM, CNNs, linear
projections) on top of the chosen SSL model. Our approach is a single transformer encoder-decoder model capable of perform-
ing all six tasks using various adapters for each task and initialized on the encoder side with the chosen SSL model. The metrics
are computed with the s3prl framework and Avg denotes the average performance across all the tasks.

IEMOCAP SNIPS FSC
ASR

(WER ↓)
ER

(Acc % ↑)
ASR

(WER ↓)
IC

(Acc % ↑)
SF

(F1 ↑,CER ↓)
ASR

(WER ↓)
IC

(Acc % ↑)
MTL: ESP-net [22] - 67.6 - 91.7 - - 99.6
MTL: ASR+SER [12] 32.7 63.4∗ - - - - -
MTL: ASR+IC [23] - - - - - - 98.2
MTL: ASR+IC [24] - - 11.8 98.6 - - -
wav2vec2.0 large (Ours)
- Single task Adapter 22.3 65.6 8.5 98.4 94.7, 12.9 0.6 99.4
- MTL: Stacked 24.2 68.2 7.7 98.7 94.4, 13.5 0.6 99.5
- MTL: Fusion 22.1 65.4 7.3 99.1 95.4, 11.8 0.6 99.3

Table 2. Performance comparison between various MTL implementations and our three different adapter-based architectures.
*uses weighted accuracy

# of tasks
6 tasks 9 tasks

SUPERB [7] 126.6M 252.8M
Ours 113.1M 135.6M
Ratio 89.3% 53.6%

Table 3. Comparison between the total # of additional train-
able parameters required to accommodate 6 tasks depicted in
Table 1 and 9 tasks which includes the additional ASR tasks
in Table 2.

along with ER, we format the ground truth as <transcript>
<task separator> <emotion label>.

For training the encoder-decoder model, we use a combi-
nation of losses depending on the adapter architecture and the
task. The overall objective L can be written as,

Lnll =

N∑
task=1

λtask · Ltask (1)

L = (1− λctc) · Lnll + λctc · Lctc + 1ce · Lce (2)

where Lnll denotes the Negative Log-Likelihood loss at the
decoder end. The output tokens during multi-task training
comprise tokens from N tasks which are weighted using the

hyperparameter λtask. Lctc denotes CTC loss applied at the
encoder end, similar to hybrid CTC/attention objective [21].
Hyperparameter λctc is used to weigh between the NLL and
CTC loss. Finally, Lce denotes Cross Entropy Loss applied at
the encoder end for classification tasks, and hyperparameter
1ce is 1 when it’s a classification task.

4. EXPERIMENTAL SETUP

We train adapters to perform five different SLP tasks (corre-
sponding datasets are denoted in the brackets), 1) ASR (Lib-
riSpeech [20]), 2) PR (LibriSpeech), 3) ER (IEMOCAP [27]),
4) IC (Fluent Speech Commands [28]), and 5) SF (SNIPS
[29]). We chose datasets used by the SUPERB benchmark2

[7] for the corresponding tasks. In addition, we also train ASR
adapters specifically for each domain (IEMOCAP, SNIPS and
FSC) which helps in MTL (e.g, ASR + ER) and IC adapter for
SNIPS which helps when performed with SF.

For evaluation, we follow the same setting as SUPERB.
The adapter dimension was set to 128. For λ settings, in
single-label classification tasks such as ER, λctc is set to 0.
For the rest, λctc is set to 0.3 and in experiments where CTC
loss was used, we combined the attention-based and CTC

2https://github.com/s3prl/s3prl
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scores for joint decoding, assigning a weight of 0.4 to the
CTC scores (following the SpeechBrain recipe). For MTL,
in the stacked adapter setting [8] only the additional adapter
is trained, while the rest of the model, including the bot-
tom adapter(s) remains frozen. Here, λtask assigns a higher
weight to the tokens corresponding to the new task. In our
experiments, this value was set to 0.9 for the new task and 0.1
for the tasks of the already-trained bottom adapters. In fusion,
the adapters are already trained with respective tasks, so we
experimented with two settings: first, λtask is set to 1, and
second, we set it to equal weights for all tasks and chose the
best. We modified SpeechBrain 3 recipes for our implemen-
tation.

5. RESULTS AND DISCUSSION

Table 1 presents our results, showing that our approach
achieves better performance compared to the wav2vec2
SUPERB [7] benchmark (+5.4) and actually also with the
WavLM model (+1.4) also from SUPERB. This performance
improvement can be attributed to our design choice of uti-
lizing adapters that allows combining different tasks for im-
proved multi-task learning. For example, for SF performance
on SNIPS, the adapters where ASR, SF and IC are learned si-
multaneously allows an improvement of 8.3 F1 and 15.5 CER
(see Table 2). Detailed results regarding the performance of
different adapter combinations are discussed in the Ablation
Study. In contrast to having a frozen encoder and task-specific
decoders, we incorporate task-specific adapters on a single
encoder-decoder model to perform multiple SLP tasks which
leads to both efficient utilization of encoder representations,
and memory efficiency (see Table 3).

5.1. Ablation Study: Comparison between different types
of adapter-based task modules

Research has shown that certain tasks, like ASR and ER [12,
13], can benefit from simultaneous learning, enhancing each
other’s performance. As adapters naturally enable MTL [2],
in addition to single-adapter task modules, we investigate two
adapter-based MTL approaches: Stacking and Fusion. We
hypothesize that performing MTL with adapters produces less
increase in computational overhead compared to the perfor-
mance improvement.4

Table 2 compares the performance amongst three differ-
ent adapter settings and also with existing works that perform
MTL. In the IEMOCAP dataset, the Adapter Stacking setting
achieves the highest performance in Emotion Recognition.
On the SNIPS dataset, the Adapter Fusion setting performs
the best in SF and IC. Our performance is comparable to
studies that use gold-text directly, such as [30] with an SF-F1

3https://github.com/speechbrain/speechbrain
4Adapter stacking: no change in the number of parameters and adapter

Fusion introduces an additional 57M parameters.

score of 95.9 and IC-Acc of 98.8% on SNIPS. For FSC, there
is minimal performance variation in the literature, since mod-
els already achieve above 99% accuracy. The WER is also
comparable with existing works — Ours: 0.6, and [31]: 0.5.
This performance improvement of adapter-based MTL archi-
tectures aligns with previous research indicating that MTL
enhances task performance [30]. Furthermore, fine-tuning
our ASR adapters for each dataset performs better than ap-
proaches that use generic ASR models, as previously demon-
strated by [12].

In addition to the improvements in performance, our
unified model shows multi-task capabilities in a parameter-
efficient and scalable manner. Table 3 illustrates the com-
parison between our approach and the SUPERB benchmark
in terms of the number of trainable parameters needed for
accommodating six tasks (as in Table 1) and nine tasks (in-
cluding the additional ASR tasks from Table 2). Notably, our
approach requires fewer parameters, and more importantly,
even as the number of tasks increases, the increase in the
parameter count remains significantly lower with the ratio
dropping to 53.6%.

6. CONCLUSION

Our work shows that adapter-based task modules effectively
enable a unified encoder-decoder model for handling multiple
speech-processing tasks. Our experiments show that we are
able to achieve performance improvements compared to the
SUPERB benchmark, while being more efficient in terms of
parameters by eliminating the need for dedicated task-specific
decoders. This work highlights the potential to develop sim-
ple and scalable model architectures that are capable of per-
forming multiple SLP tasks within a unified model. In the fu-
ture, our goals include evaluating our approach for different
choices of SSL models such as HuBERT and WavLM and ex-
ploring different adapter architectures. Additionally, we also
aim to broaden the scope of our approach to add the remain-
ing tasks in the SUPERB benchmark such as Speaker Iden-
tification, Speaker Diarization, and other speech-processing
tasks/datasets.
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