

Speaker anonymization with neural audio codec language models

Michele Panariello,¹ Francesco Nespoli,² Massimiliano Todisco¹ and Nicholas Evans¹

¹EURECOM - Sophia Antipolis, France

²Microsoft UK - London

Champion et al. [1], INTERSPEECH 2022:

Proposes speaker anonymization system in which speech features are discretized to reduce personal information leakage

Borsos et al. [2], TASLP 2023 Wang et al. [3], 2023

Audio generation by autoregressively modeling **discrete tokens** of a *neural* audio codec (NAC) [4]

Suno AI, 2023

Releases Bark, open-source NAC-based TTS system inspired by [2,3].

This paper:
Apply discrete NAC
token modeling for
speaker anonymization

The speaker anonymization task

Formalized in the VoicePrivacy initiative [5], speaker anonymization is the task of taking an input speech signal and processing it so that

- The liguistic (spoken) content is preserved
- The paralinguistic content (emotion, intonation) is preserved
- The **identity** of the speaker is concealed

The output is a new, anonymized waveform.

Results

System	LibriSpeech				VCTK			
	EER (%)	WER (%)	G_{VD}	ρ ^{FO}	EER (%)	WER (%)	G_{VD}	ρ ^{F0}
Original data	4.4	4.2	0	1	3.2	12.8	0	1
B1b [6]	8.6	4.4	-5.8	0.78	9.7	10.7	-7.1	0.81
T11 [7]	20.6	3.9	-19.0	0.68	39.7	7.9	-18.4	0.73
Champion et al. [1]	23.4	4.6	n.a.	0.52	40.8	10.3	n.a	0.60
Ours	28.5	7.5	-1.5	0.68	45.5	18.9	-2.1	0.74

Proposed anonymization system

$$\mathbf{s} \in \{1,\dots,N_S\}^{T_S}$$

• NAC encoder (EnCodec): encodes random pseudo-speaker prompt in discrete acoustic tokens \tilde{a} using Q hierarchical dictionaries, each of size N_o . Lower-level dictionaries encode coarser features

$$\mathbf{ ilde{a}} \in \{1,\ldots,N_Q\}^{Q imes T_A}$$

• Coarse transformer (GPT-like): estimates the first Q_c levels of output acoustic tokens a from s and \tilde{a} . They follow the semantics in s and the speaking style in \tilde{a}

$$p\left(\mathbf{a}_{q,t} | \mathbf{s}, \mathbf{ ilde{a}}_{< Q_C,:}, \mathbf{a}_{< Q_C, < t}, \mathbf{a}_{< q,t}
ight)$$

• Fine transformer (GPT-like): estimates remaining $Q - Q_c$ levels of acoustic tokens a from \tilde{a}

$$p\left(\mathbf{a}_{q,:}|\mathbf{ ilde{a}},\mathbf{a}_{< q,:}
ight)$$

• NAC decoder (EnCodec): converts a to waveform.

References

- [1] P. Champion et al., "Are disentangled representations all you need to build speaker anonymization systems?," in Interspeech 2022, ISCA, pp. 2793-2797.
- [2] Z. Borsos et al., "AudioLM: A Language Modeling Approach to Audio Generation," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 31, pp. 2523-2533, 2023.
- [3] C. Wang et al., "Neural Codec Language Models are Zero-Shot Text to Speech Synthesizers." arXiv, Jan. 05, 2023.
- [4] A. Défossez et al. "High Fidelity Neural Audio Compression," in Transactions on Machine Learning Research, 2023.
- [5] N. Tomashenko et al., "Introducing the VoicePrivacy Initiative," in Interspeech 2020, ISCA, pp. 1693-1697, 2020.
- [6] N. Tomashenko et al., "The VoicePrivacy 2022 Challenge evaluation plan," arXiv, Sep. 28, 2022.
- [7] J. Yao et al., "NWPU-ASLP System for the VoicePrivacy 2022 Challenge," in Proc. 2nd Symposium on Security and Privacy in Speech Communication, 2022.