
DATA DRIVEN GRAPHEME-TO-PHONEME REPRESENTATIONS FOR A LEXICON-FREE
TEXT-TO-SPEECH

Abhinav Garg∗1†, Jiyeon Kim∗2, Sushil Khyalia3†, Chanwoo Kim4†, Dhananjaya Gowda2

abhinavg@stanford.edu, jstacey7.kim@samsung.com, skhyalia@andrew.cmu.edu,
chanwcom@korea.ac.kr, d.gowda@samsung.com

1Stanford University 2Samsung Research 3Carnegie Mellon University 4Korea University

ABSTRACT

Grapheme-to-Phoneme (G2P) is an essential first step in any
modern, high-quality Text-to-Speech (TTS) system. Most of
the current G2P systems rely on carefully hand-crafted lexi-
cons developed by experts. This poses a two-fold problem.
Firstly, the lexicons are generated using a fixed phoneme set,
usually, ARPABET or IPA, which might not be the most op-
timal way to represent phonemes for all languages. Secondly,
the man-hours required to produce such an expert lexicon are
very high. In this paper, we eliminate both of these issues
by using recent advances in self-supervised learning to obtain
data-driven phoneme representations instead of fixed repre-
sentations. We compare our lexicon-free approach against
strong baselines that utilize a well-crafted lexicon. Further-
more, we show that our data-driven lexicon-free method per-
forms as good or even marginally better than the conventional
rule-based or lexicon-based neural G2Ps in terms of Mean
Opinion Score (MOS) while using no prior language lexicon
or phoneme set, i.e. no linguistic expertise.

Index Terms— Grapheme-to-Phoneme, data-driven G2P,
Text-to-Speech, lexicon-free TTS, self-supervised learning

1. INTRODUCTION

Text-to-Speech synthesis has been the subject of extensive
research for several decades [1, 2]. Initially, concatenative
speech synthesis models were developed to address this task
by assembling waveforms from a pre-existing database of
speech. Subsequently, statistical approaches were introduced
to generate speech features from the text, which were then
fed to a vocoder to produce the final output. The results of
these methods are unsatisfactory due to the unnaturalness and
mispronunciations in the generated speech.

Grapheme-to-Phoneme (G2P) models are an integral part
of current Text-to-Speech (TTS) engines [3, 4]. The ini-
tial work in this field was done using rule-based and joint
sequence models. However, with the rise of deep learn-
ing methods, RNN, and even more recently, Transformer
based architectures have been used to perform a variety of
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tasks such as Grapheme-to-Phoneme, Automatic Speech
Recognition[5, 6, 7], Machine Translation, and Text-to-
Speech Synthesis [3, 4, 8, 9]. As G2P conversion is essen-
tially a sequence-to-sequence modeling task, using Encoder-
Decoder architectures[10, 11] helped obtain improvements
on Grapheme-to-Phoneme conversion [3].

Traditional G2Ps [12] typically use a large lexicon to
perform dictionary searches of the most frequent words and
use hand-crafted rules to generate pronunciations for out-of-
vocabulary words. Neural G2Ps [3], in contrast, use lexicons
as their data for training their neural network and use the
obtained network for predicting pronunciations. While both
of these methods have been instrumental in building modern-
day TTS systems, they have severe limitations in terms of
requiring an external lexicon. Building a lexicon is an ex-
pensive and highly cumbersome task, as it requires multiple
language experts to propose and then verify its validity.

Recently there have been efforts to build a massively
multi-lingual ByT5 G2P [13]. It uses a T5 transformer based
encoder-decoder architecture [14] and uses an UTF8 based
input tokenization to handle scripts in multiple languages. It
uses publicly available lexicons from the internet covering
upto 100 languages with varying size and quality of the lex-
icons. The difficulty in procuring high quality lexicon for
all languages and the decreasing accuracy of g2p models for
languages with limited or noisy data can be clearly seen from
this paper.

In this paper, we propose a new mechanism to train the
Grapheme-to-Phoneme model without the need of any lexi-
con. We use Text-to-Speech as a use-case to show the effec-
tiveness of our G2P model. We first use unlabeled speech
data to pre-train a HuBERT [15] for three iterations. Once
we have a pre-trained HuBERT model, we input the labeled
speech data and use a specific transformer layer to extract the
speech features and apply k-means clustering on them to ob-
tain frame-level phoneme targets. We use paired phoneme
targets and labeled speech data to train our G2P transformer
model. We then use the trained G2P to train a Tacotron 2 [1]
model.



2. NEURAL GRAPHEME-TO-PHONEME

2.1. G2P Architecture

Transformer-based Grapheme-to-Phoneme models have been
found to outperform LSTM / Recurrent Encoder-Decoder
models [3, 16, 17] while also having the advantage of faster
parallel training resulting in significantly less training time.

The neural Grapheme-to-Phoneme model takes the grapheme
sequence X = (x1, x2, . . . , xn) as input. It then gener-
ates representations L = (l1, l2, . . . , ln) in a latent space
which are then passed to a decoder. Finally, the decoder
tries to predict the corresponding phoneme sequence Y =
(y1, y2, . . . , ym) in an autoregressive manner. Here n,m is
the token length of input and output respectively.

2.2. Text-to-Speech System

To evaluate our G2P for the TTS task, we use Tacotron 2 [1]
as our text-to-speech model. Although the original Tacotron
2 uses text, many studies [18, 19] have found phones to pro-
duce superior results. Hence, we use phones as inputs to the
Tacotron model for our experiments.

3. SELF SUPERVISION IN SPEECH RECOGNITION

Models like wav2vec2.0 [20] quantize and mask input au-
dio signals, after which they use contrastive loss to allow the
model to learn from the unlabeled data. In contrast, models
like HuBERT [15] separate the acoustic unit discovery step
from the masked prediction representation learning stage, al-
lowing for a more direct predictive loss computation. We use
these acoustic units in Section 4 for training our G2P mod-
els. We outline the pre-training approach for obtaining these
acoustic units in HuBERT below.

Given speech representation feature sequence X =
[x1, x2, ..., xT ] of length T , M ⊂ [T ], a corrupted sequence
X̃ is obtained by replacing input representation at time t,
xt with x̃ if t ∈ M , where x̃ is a learned vector. HuBERT
encoder e takes X̃ as input and predicts an output distribution
over target vocabulary at each time step p(zt|X̃, t), where zt
is frame level target obtained via acoustic unit discovery.

For obtaining frame-level targets, an acoustic unit discov-
ery model is used. Given X , acoustic unit discovery model
h takes X as input to produce h(X) = Z = [z1, z2, ..., zT ]
where each zt belongs to a C-class categorical distribution
and h is a clustering model. We use the same clustering model
as [15] i.e., k-means.

While training the model, M is calculated by randomly
selecting p% of timesteps as the starting indices and masking l
steps starting from them. Cross entropy loss is then calculated
over the masked timesteps.

Lm(e;X,M,Z) = Σt∈M log p(zt|X̃, t), (1)

Encoder e is trained to minimize Lm in the pre-training
stage. The pre-training is done in multiple iterations. In the
initial iteration, the clustering model h uses MFCC-generated
features for producing Z. However, as the training proceeds,
to obtain better targets Z, h uses latent features extracted from
the HuBERT model pre-trained in the previous iteration at
some intermediate layer.

4. DATA DRIVEN GRAPHEME-TO-PHONEME FOR
TEXT-TO-SPEECH

Recent TTS systems [1, 21] have shown remarkable re-
sults in producing almost natural-sounding audios. However,
these TTS systems require equally high-performing G2P
systems to produce these high-quality audios. Building a
well-performing G2P poses a couple of challenges for both
traditional lexicon based G2Ps and neural G2Ps. For tra-
ditional G2P systems, obtaining a lexicon is a tedious task
and requires experts. Moreover, even if the lexicon can be
obtained, making rules for out-of-vocabulary words poses
another issue. Although neural G2P does not use a lexicon
for inference, it uses a lexicon as training data.

While obtaining a lexicon for a language is laborious,
speech data is generally available in abundance. Obtaining
a text transcription corresponding to a few hours of speech
data is much more feasible. Starting with unlabeled speech
data and a small amount of labeled data, we propose a novel
training strategy to (1) Obtain a data-driven phoneme set in
contrast to the traditional sets like CMU (ARPABET) or IPA,
(2) Train a neural G2P on this new phoneme set, (3) We
subsequently use the trained G2P for training a TTS system.

For achieving this, we use the acoustic units produced
by a HuBERT model during the discovery stage as our pho-
netic representation. Using the number of clusters (i.e.,
k-value), we can control the size of the phoneme set. We
present our training algorithm with the availability of unla-
beled speech dataset Su and a small labeled dataset Sl =
[(s1, t1), ...(sn, tn)], where (si, ti) is a single data point with
si audio utterance paired with ti text. A flow chart of the
algorithm is shown in Fig. 1 and explained below.

1. We use the unlabeled speech data Su to pre-train a
HuBERT for three iterations. Using MFCC for the first
iteration, then using some intermediate transformer
layer. See Section 5.

2. Once we have a pre-trained HuBERT model, we in-
put the labeled speech data, (s1, ..., sn), and use
the 9th transformer layer to extract the speech fea-
tures and apply k-means clustering on them to obtain
frame-level phoneme targets (P1, ...., Pn), where each
Pi = h(qi) = [zi1, ...z

i
T ] and qi is the 9th layer output

of e(si).



Fig. 1. Flow chart demonstrating proposed algorithm

3. Once we have Pi for all si in Sl, we use the paired
(Pi, ti) to train our G2P transformer model as described
in Section 2.

4. We then use the trained G2P model to train a Tacotron
2 model described in Section 2.

Using the above training algorithm, we can leverage a
large amount of available unlabeled speech data and train
high-quality TTS models with a minimal amount of labeled
training data.

5. EXPERIMENTS

5.1. HuBERT model

As a first step, We trained the HuBERT Base model [15] with
95M parameters. 39 dimension MFCC features were used
for obtaining cluster targets in the initial iteration, after which
the 9th transformer layer outputs were used. A total of 3 itera-
tions were performed, and the 9th transformer layer outputs of
the final iteration were also used in obtaining final phoneme
targets to train the G2P model.

We used the LibriSpeech dataset to pre-train the model.
We only use the 960h training set for pre-training HuBERT
model and no fine-tuning stage was performed.

For masking, we randomly mask 8% of the timesteps with
a mask length of 10 steps. An initial value of k=100 for k-
means clustering was used in the first iteration, after which
k=500 was used. However, while obtaining phone targets,
k=100 was used. Adam optimizer with linear decay and peak
learning rate of 5e−4 was used. A learning rate warmup was
also used for the first 8% of the training steps.

5.2. G2P Data

To obtain training data for our G2P model, we used the publi-
cally available LJSpeech Dataset [22] with ∼ 24hrs of single
speaker data at a sampling frequency of 22050. We split the
dataset into standard training, validation, and testing splits of
8:1:1, respectively. Audio data from LJSpeech was down-
sampled to 16000 before passing it through HuBERT. And as

mentioned in Section 5.1, we used k=100 for k-means clus-
tering to obtain phone targets.

To train our rule-based and neural baselines mentioned in
Section 2, we use the CMU dict dataset. The training, val-
idation, and testing splits were the same as [3] to make the
results directly comparable.

5.3. G2P model

For the G2P transformer model, we used a modified version of
the open-source toolkit Deep Phonemizer1 [23]. We use 512
as the size for transformer input features. Both the encoder
and decoder have 4 layers of transformers. We use 1024 as the
size for the feed-forward network. A dropout rate of 0.1 was
used along with a multi-head attention consisting of 4 heads.
We used a learning rate of 0.0001 with the Adam optimizer.
The input text was chunked into words before passing them
through the network.

5.4. Tacotron 2

We adopted the open-source TTS library CoquiTTS2 for
building and training our TTS models. Original sampling rate
data of 22050 Hz was used without any downsampling. Adam
optimizer was used with β1 = 0.9, β2 = 0.998, ϵ = 10−6

and a learning rate of 1e−4. Wav portions smaller than 40dB
were considered silent and were eliminated from the dataset.

5.5. Evaluation

We calculate the usability of our models and compare our
model with baselines using the golden mean opinion score
(GMOS) and mean opinion score (MOS) respectively. For
calculating GMOS and MOS, we synthesized 40 sentences
from the test set. Each sentence was rated by 10 Human eval-
uators on a 10 points Likert scale from 0.5 (“Bad”) to 5 (“Ex-
cellent”) with a step size of 0.5. We report the results with
95% confidence interval.

1https://github.com/as-ideas/DeepPhonemizer
2https://github.com/coqui-ai/TTS



Table 1. Comparison of our transformer G2P model with
other previous works.

Model PER% WER%
Bi-directional LSTM (3 layers) [17] 5.45 23.55

Encoder CNN, decoder Bi-LSTM [24] 4.81 25.13
Ours 5.25 26.34

6. RESULTS

To verify the quality of our G2P transformer model, we first
train our model and obtain the results on the standard CMU
dict dataset. As can be seen from Table 1, our models are
comparable to the previous state-of-the-art. We used the
ARPABET phoneme set as the output phoneme set for train-
ing. Phoneme Error Rate (PER) is obtained by calculating
the Levenshtein distance between the predicted phoneme se-
quence and the reference phoneme sequence in CMU dict. In
case of multiple pronunciations, the one with the minimum
distance is used. Word Error Rate (WER) measures how
many word phoneme sequences were predicted exactly by
the transformer model.

To evaluate the usability of our approach, we calculate
the GMOS using the HuBERT model. In this setup, we don’t
use any G2P model instead use the HuBERT model directly
to produce phoneme sequences using the test audio. All the
HuBERT configurations were the same as those mentioned
earlier. As we use phonemes obtained from HuBERT model
to train our G2P model, these phoneme sequences are like
golden targets for us, and their good quality would indicate
the usefulness of exploring the usage of HuBERT outputs to
train G2P systems. Using test audios to produce phonemes,
we obtained a MOS of 4.2±0.06, which is significantly better
than the baseline, demonstrating the usage of HuBERT out-
puts as phonemes for TTS systems3.

Furthermore, we compare our G2P trained model using
a custom phoneme set produced by the algorithm outlined in
Section 4 with traditional rule-based G2P [25] and neural G2P
trained using a lexicon. The results shown in Table 2 clearly
indicate that our algorithm produces superior results as com-
pared to the traditional approach or even the neural approach.
Apart from producing better results, our approach does not
need a lexicon and hence can be used more widely.

6.1. Ablation Studies

Finally, we perform some ablation studies by varying the
number of values of clusters (k) when producing phoneme
targets for the G2P model. Intuitively a large value of k would
allow a wider range of phonemes to be produced, which in
turn would allow for better audio production in TTS. How-
ever, a very large value of k would add little to the variety

3Audio samples are available at : https://abhinavg4.github.io/g2p/

Table 2. MOS results for comparison between our proposed
neural G2P, traditional baseline and neural baseline.

Model Mean Opinion Score (MOS)
Rules based G2P 3.8 ± 0.04

Neural G2P using Lexicon 3.91 ± 0.06
Proposed Neural G2P 3.96 ± 0.05

Natural Speech 4.32 ± 0.07
Golden Hubert Labels 4.2 ± 0.06

Table 3. Ablation results for impact of cluster size on MOS.
k Mean Opinion Score (MOS)

50 3.71 ± 0.08
100 3.96 ± 0.06
150 3.82 ± 0.06

and would make the model bulkier. From Table 3 we observe
that the value of 100 works best in the case of the English
language. While the value of 50 is too small to represent the
variety of sounds present, the value of 150 is too high and
leads to worse performance.

7. CONCLUSION

In this work, we explore a data-driven way to obtain phoneme
representation for a language. We then used these phoneme
representations to train a neural Grapheme-to-Phoneme
model and used that model to train a high-quality TTS sys-
tem. Apart from performing comparable to previous G2Ps,
our G2P does not require any domain experts to build the lex-
icon. We perform our experiments on the English language to
compare our results with previous works. Finally, we present
ablation studies on the size of phoneme set optimal for the
English Language. As our methods does not require linguist
expertise our method can be easily extended for low-resource
languages as a future work.
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