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ABSTRACT

For the purpose of computational efficiency, we propose two
subspace-based methods, but without eigendecomposition, to
address the two typical problems in nested array processing,
i.e., direction-of-arrival (DOA) estimation and noise elimina-
tion. In detail, to estimate DOA parameters, we judiciously
arrange the segments extracted from the co-array model and
then introduce a novel co-array-based orthogonal propagator
method (COPM). Next, we develop a projection-based noise
cancellation approach in the co-array domain, improving the
relatively poor performance of COPM at low signal-to-noise
ratios. Simulations evaluate the proposed algorithms under
both overdetermined and underdetermined conditions.

Index Terms— Co-array model, direction-of-arrival esti-
mation, nested array, orthogonal propagator method.

1. INTRODUCTION

The nested array (NA) [1] and its variants have attracted much
research interest over the years because such array geome-
tries provide increased degrees of freedom. This appealing
advantage is achieved in the co-array domain. Specifically, by
vectorizing the covariance matrix, we can formulate the self-
Khatri-Rao product of the array manifold matrix. This will
yield a difference co-array (DCA) model that behaves like
a measurement sample of an extended virtual uniform linear
array (ULA). Then, many approaches can accommodate this
DCA model to realize underdetermined (more sources than
sensors) direction-of-arrival (DOA) estimation.

Among them, using the spatial smoothing (SS) technique
to enable subspace-based DOA estimation algorithms (e.g.,
MUSIC) gains a trade-off between computational complexity
and estimation precision, thus widely used [2–6]. In addi-
tion, it has been shown that the original SS step can be further
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simplified by the construction in [7], which is much easier
to compute from array data and becomes an attractive option
[8–13]. However, its basic idea is still to reconstruct a square
covariance matrix. In fact, such an inflexible operation does
not fully exploit the source number typically assumed as a
priori knowledge in most subspace methods. In practice, the
number of incident sources may not reach the identifiability
bound of an NA. At this point, the aforementioned methods
will suffer from an unnecessary loss of array aperture.

On the other hand, to obtain mutually orthogonal signal
and noise subspaces, the conventional wisdom is to use eigen-
value decomposition (EVD). Unfortunately, EVD procedures
handling high-dimensional matrices are computationally in-
tensive and time-consuming, thereby unfavorable for the on-
line processing of massive arrays. To overcome this problem,
researchers have proposed subspace-based methods without
eigendecomposition (SMWE) (e.g., the orthogonal propaga-
tor method (OPM) [14]), which have aroused much attention
in recent decades [15–18]. However, these works only ac-
count for physical arrays rather than virtual co-arrays. It is
worth mentioning that when it comes to the NA geometry, in
which just a few physical sensors can generate a large virtual
DCA, SMWE-type schemes will be more attractive.

Motivated by the above considerations, we propose a
novel co-array-based OPM (COPM) tailored for NAs to esti-
mate arrival angles. It uses the propagator matrix, which can
be easily extracted from array data, to construct the signal
or noise subspace, thus avoiding the EVD required by con-
ventional subspace methods. Considering the sensitivity of
COPM to additive noise, we also develop a projection-based
noise elimination method (PNEM) without EVD. Finally, the
numerical results verify the better performance of COPM
over the conventional SS-based MUSIC (SS-MUSIC).

Notations: Matrices and vectors are represented as bold-
face capital and lowercase letters, respectively. (·)T , (·)H ,
(·)∗, (·)−1, and (·)† denote transposition, conjugate transpo-
sition, complex conjugation, inverse, and pseudo-inverse, re-
spectively. 0M,N and IN stand for an M×N zero matrix and



an N -dimensional identity matrix, respectively. The Khatri-
Rao product is denoted by ⊙. E{·}, vec{·}, and trace{·}
are the statistical expectation, matrix vectorization, and ma-
trix trace operators, respectively. diag{X} returns a column
vector composed of the diagonal elements in X, and diag{x}
forms a diagonal matrix with the diagonal entries being x.

2. DIFFERENCE CO-ARRAY MODEL

We consider that K (known as a priori or detected success-
fully) uncorrelated far-field narrowband sources, i.e., s(t) =

[s1(t), . . . , sK(t)]
T , from directions θ = {θ1, . . . , θK} im-

pinge on an NA with N physical sensors located at posi-
tions PN = {d1 = 0, d2 = 1, . . . , dN} (measured in half-
wavelength units). The received data vector is given as

y(t) = A(θ)s(t) + n(t), (1)

where the N elements of the noise vector n(t) are assumed to
be independent and identically distributed random variables.
The manifold matrix A(θ) =

[
a(θ1), . . . ,a(θK)

]
comprises

K steering vectors a(θk) =
[
1, ejπ sin θk , . . . , ejπdN sin θk

]T
(k = 1, 2, . . . ,K). Then, assume that s(t) and n(t) are statis-
tically independent. The covariance matrix of y(t) reads

R = E
{
y(t)yH(t)

}
= A(θ)RsA

H(θ) + σ2
nIN , (2)

where σ2
n is the variance of noise, and the diagonal matrix

Rs = diag
{
σ2
s,1, σ

2
s,2, . . . , σ

2
s,K

}
contains the powers of the

K incident signals. Vectorizing R, we have

r = vec {R} =
(
A∗(θ)⊙A(θ)

)
p+ σ2

ne, (3)

where p =
[
σ2
s,1, . . . , σ

2
s,K

]T
, and e = vec {IN}. Based on

the NA geometry, each column of A∗(θ)⊙A(θ) should have
only Nt = 2dN +1 different entries. Thus, the repeated items
(after their first occurrence) will be removed in conventional
methods. Then, we sort the remaining items to obtain an
augmented array manifold, i.e., Ā =

[
ā(θ1), . . . , ā(θK)

]
∈

CNt×K , hereafter the dependence on θ is removed for nota-
tional convenience. In Ā, for k ∈ {1, 2, . . . ,K},

ā(θk) =
[
e−jπdN sin θk , e−jπ(dN−1) sin θk , . . . ,

1, . . . , ejπ(dN−1) sin θk , ejπdN sin θk
]T

(4)

is the steering vector of an extended virtual ULA with sensor
positions PNt = {−dN ,−(dN − 1), . . . ,−1, 0, 1, . . . , dN}.

Accordingly, the data vector extracted from r reads1

r̄ = Āp+ σ2
ni ∈ CNt×1, (5)

1Since the sample covariance matrix R̂ is estimated based on a limited
number of snapshots in practice, those theoretically repeated items in r̂ gen-
erally have different values. Therefore, to make full use of the second-order
statistical information of the array data, we can average the items with the
same lag to achieve refined estimates.

where i is the N̄ th (N̄ = dN + 1) column of INt . Now, r̄ be-
haves like a measurement sample of the ULA with positions
PNt

. In order to estimate the K DOA parameters, we will
construct a rank-K matrix and then exploit its eigenstructure
to enable subspace methods.

3. ALGORITHM DEVELOPMENT

The SS technique is a powerful tool for the above purpose.
To formulate a unified expression, we consider the general
case where r̄ is divided into I overlapping segments (I =
1, 2, . . . , N̄ ). The ith (i = 1, 2, . . . , I) segment r̄I,i spans
from the ith to (i+Nt − I)th entries of r̄, written as

r̄I,i = ÃIΦ
i−1p+ σ2

niI,i = ÃIRsϕi−1 + σ2
niI,i, (6)

where ÃI is composed of the first Nt−I+1 rows of Ā, Φ =
diag

{
ejπ sin θ1 , ejπ sin θ2 , . . . , ejπ sin θK

}
, iI,i consists of the

ith to (i+Nt−I)th elements in i, and ϕi−1 = diag
{
Φi−1

}
.

Then, we rearrange {r̄I,i}Ii=1 in the following fashion to
get the matrix R̄I of size (Nt − I + 1)× I:

R̄I =
[
r̄I,I r̄I,I−1 · · · r̄I,1

]
= QI +MI , (7)

where QI and MI are, respectively, the signal- and noise-
related terms with the smoothing parameter I , i.e.,

QI = ÃIRsB
H
I , (8)

MI = σ2
n

[
iI,I iI,I−1 · · · iI,1

]
, (9)

in which BH
I =

[
ϕI−1,ϕI−2, . . . ,ϕ0

]
, and we can find that

BI =


e−jπ(I−1) sin θ1 · · · e−jπ(I−1) sin θK

...
. . .

...
e−jπ sin θ1 · · · e−jπ sin θK

1 · · · 1

 . (10)

With these formulas, our goal is to find the possible opti-
mized structures of R̄I for NA processing.

3.1. Review on SS-MUSIC

First, taking into account the common case of I = N̄ , we
can readily demonstrate that ÃN̄ and BN̄ will share the same
expression. Meanwhile, MI will become σ2

nIN̄ . At this time,

R̄N̄ = ÃN̄RsÃ
H
N̄ + σ2

nIN̄ , (11)

which can be regarded as an N̄ × N̄ covariance matrix cor-
responding to the ULA with N̄ sensors located at PN̄ =
{−dN ,−(dN − 1), . . . , 0}. Performing EVD on R̄N̄ , we can
get the noise subspace matrix and then use MUSIC to esti-
mate the K arrival angles. This constitutes the well-known
SS-MUSIC algorithm. Obviously, up to N̄ − 1 = dN signals
can be resolved, where dN = O

[
N2

]
thanks to the NA ge-

ometry. However, the construction in (11) does not take full
advantage of the prior knowledge K. Especially when K is
much less than dN , SS-MUSIC can be further improved.



3.2. DOA Estimation Using COPM

To make efficient use of the available aperture, we divide r̄
into I = K segments rather than I = N̄ , arriving at

R̄K = ÃKRsB
H
K +MK ∈ CÑ×K , (12)

where Ñ = Nt − K + 1. Clearly, due to the Vandermonde
structures of ÃK and BK , QK (the first term in (12)) is a
rank-K matrix suitable for subspace methods. Inspired by
this observation, we propose an SMWE-type DOA estimation
algorithm (i.e., COPM), whose core idea is to find the noise
subspace orthogonal to the column space of ÃK . A direct
comparison between ÃK and ÃN̄ shows that the former pos-
sesses a larger aperture, implying the better performance of
COPM than SS-MUSIC. More mathematically, we introduce
the propagator matrix P ∈ C(Ñ−K)×K , which is a linear op-
erator depending on the partition of ÃK and is defined as

PÃK,1 = ÃK,2, (13)

where ÃK,1 and ÃK,2 are, respectively, the first K rows and
remaining Ñ −K rows of ÃK . Then, based on the definition
of E =

[
P∗,−IÑ−K

]T ∈ CÑ×(Ñ−K), it can be verified that

EHÃK = PÃK,1 − IÑ−KÃK,2 = 0. (14)

The above equation implies that E is equivalent to the noise
subspace matrix because its columns are orthogonal to the
steering vectors in ÃK . To estimate the propagator P, we
first consider the noise-free case, which means that MK has
been removed. Please note that such an assumption is also
necessary for some related works [3, 5, 19–21]. Focusing on
R̄K , we can partition it into R̄K,1 ∈ CK×K and R̄K,2 ∈
C(Ñ−K)×K , which are related according to (13) as

R̄K =

[
R̄K,1

R̄K,2

]
=

[
ÃK,1

ÃK,2

]
Ω =

[
ÃK,1

PÃK,1

]
Ω, (15)

where Ω = RsB
H
K ∈ CK×K . Following (15), we have

PR̄K,1 = R̄K,2. Hence, the propagator P can be estimated
as P̂ = R̄K,2R̄

−1
K,1, which will be used to construct the noise

subspace matrix Ê. Subsequently, based on the orthogonality
in (14), we define the spectrum function of COPM:

f(θ) =
(
ãH(θ)ΠÊã(θ)

)−1
, (16)

where ΠÊ=Ê
(
ÊHÊ

)−1
ÊH is the orthogonal projector, and

ã(θ) =
[
e−jπdN sin θ, e−jπ(dN−1) sin θ, . . . , ejπ(dN−K+1) sin θ

]T
.

Then, we can estimate the DOAs by searching the first K
maxima of (16). Notably, computing ΠÊ involves the inver-
sion of the (Ñ − K) × (Ñ − K) matrix ÊHÊ. To alleviate
the computational burden of this nonlinear operation, we keep
the Woodbury matrix identity in mind and transform ΠÊ into

ΠÊ = Ê
(
IÑ−K − P̂(IK + P̂HP̂)−1P̂H

)
ÊH . In this way,

the inversion only takes place on the K×K matrix IK+P̂HP̂.
Complexity issues: The proposed method avoids EVD

procedures. Instead, the two nonlinear operations contained
in COPM are the inversions of R̄K,1 and IK + P̂HP̂, which
are used to estimate the propagator and construct the orthog-
onal projection matrix, respectively. Note that both matri-
ces are of size K × K, resulting in a complexity of O[K3].
Compared with the complexity O[N̄3] caused by the EVD of
R̄N̄ (11) in SS-MUSIC, the computational advantage of our
method is considerable, especially for a relatively small K.

3.3. Projection-Based Noise Elimination

Until now, the problem of noise elimination still deserves fur-
ther discussion. In fact, traditional denoising methods, e.g.,
the eigenvalue-based (EV) estimation approach [12], gener-
ally involve the EVD of the high-dimensional matrix R̄N̄ ,
thus defeating the purpose of computational simplicity. Un-
like EV methods, we propose an SMWE-type noise cancella-
tion method, i.e., PNEM, which will be conducive to improv-
ing the COPM performance at high noise levels.

First, let us have a closer look at the explicit expression of
MI in (9). That is, MI =

[
0T
N̄−I,I

, σ2
nII ,0

T
N̄−I,I

]T
, which

embodies that even in the noisy case, only the (N̄ − I + 1)th
to N̄ th rows of R̄I will be impacted by σ2

nII in theory. With
this observation, we make the following partitions:

R̄I =

R̄
(1)
I

R̄
(2)
I

R̄
(3)
I


}
N̄ − I}
I}
N̄ − I

=

Q
(1)
I

Q
(2)
I

Q
(3)
I

+

0N̄−I,I

σ2
nII

0N̄−I,I

 , (17)

where Q
(l)
I = Ã

(l)
I RsB

H
I , l= 1, 2, 3, and the forms of Ã(l)

I

can be clearly obtained from (17). Then, we notice that (i)
BI in (10) can be viewed as an I × K manifold matrix. If
I > K, BI will have full column rank, which corresponds to
an overdetermined case. (ii) If N̄ − I ≥ K, the columns of(
R̄

(1)
I

)H
,
(
R̄

(3)
I

)H
, and BI will span the same subspace.

Building on these insights and keeping the assumptions of
I > K and N̄ − I ≥ K in mind, we set I to N̄ −K. This is
because (i) the row dimension of BI can reach its maximum
value, and (ii) the constraint on the source number (i.e., I >
K) will be relaxed to the maximum extent possible. Then, the
projector onto the orthogonal complement of BN̄−K will be

ΠBN̄−K
= IN̄−K − (R

(l)

N̄−K
)H
(
(R

(l)

N̄−K
)H

)†
, l = 1, 3,

which contains the inversion of a K ×K matrix. To proceed,
the noise power can be estimated by [22]

σ̂2
n =

trace
{
R̄

(2)

N̄−K
ΠBN̄−K

}
trace

{
ΠBN̄−K

} . (18)

Since the explicit theoretical expression of MI is clear (9), we
can remove MI from R̄I to isolate QI for noise cancellation.
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Fig. 1: RMSE of noise power estimate versus snapshot number. (a)
overdetermined case. (b) underdetermined case.

Identifiability condition: To satisfy that I > K, where
I = N̄ − K, PNEM is applicable to the case of K < N̄/2.
Owing to the NA geometry, the relationship N̄ = O

[
N2

]
holds, i.e., our method can still deal with underdetermined
cases. But in comparison with the EV method based on R̄N̄ ,
which can accommodate the case of K < N̄ , our method
compromises on identifiability conditions. Nevertheless, it
should be mentioned that such a compromise is also inevitable
for other SMWE-type denoising approaches, which, more-
over, fail to handle underdetermined cases.

4. SIMULATIONS

We consider an 8-element NA with the configuration P8 =
{0, 1, 2, 3, 7, 11, 15, 19}. Without loss of generality, we as-
sume that all signals have equal power σ2

s . The signal-to-
noise ratio (SNR) is defined as SNR = 10 log10(σ

2
s/σ

2
n).

First, we evaluate the noise power estimation perfor-
mance of the EV method [12] and the proposed PNEM. Due
to N̄/2 = 10, PNEM can deal with the case where up to
9 sources are present. First, considering an overdetermined
case, we assume that two signals with −5 dB SNR come
from θ = {−30◦, 20◦}. Treating the root-mean-square error
(RMSE) of σ̂2

n as a function of the snapshot number M , we
obtain Fig. 1(a) based on 10000 independent Monte-Carlo
trials. Meanwhile, the Cramér-Rao bound [23] is given as the
performance benchmark. We can find that PNEM provides
more accurate estimates than the EV method, which is at-
tributed to the construction of R̄N̄−K . Then, we move on to
the underdetermined case, where the DOAs of K = 9 signals
are uniformly distributed from −50◦ to 70◦ with an interval
of 15◦. The other settings remain unchanged. We plot the
RMSE curves in Fig. 1(b), which shows that the estimation
accuracy of PNEM gets closer to that of the EV method as
the snapshot number increases, meanwhile benefiting from a
slighter computational burden. Fig. 1 illustrates that PNEM
is suitable for the case where K is relatively small.

Next, we check the estimation performance of COPM
by comparing it with the widely used SS-MUSIC and the
pseudo-noise subspace-based OPM (PNS-OPM) [21]. The

RMSE of θ is calculated by
√

1
KL

∑K
k=1

∑L
l=1 (θ̂k,l − θk)

2
,

where L=1 × 104 is the number of Monte-Carlo trials, and
θ̂k,l is the estimate of θk in the lth trial. For a fair comparison,
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Fig. 2: RMSE performance comparison. (a) overdetermined case,
-5 dB. (b) underdetermined case, -5 dB. (c) overdetermined case, 10
dB. (d) underdetermined case, 10 dB.

PNS-OPM will be implemented after using PNEM to elimi-
nate noise. Moreover, it directly extracts the noise subspace
from the covariance matrix corresponding to the physical ar-
ray, thus failing to work in underdetermined conditions. This
means that the major advantage of NAs, i.e., the enhanced
degrees of freedom, is sacrificed in PNS-OPM. In the ex-
periments, for both the overdetermined (θ = {0◦, 13◦}) and
underdetermined (θ is consistent with that in Fig. 1(b)) cases,
the low SNR (−5 dB) and high SNR (10 dB) scenarios are
separately considered in Figs. 2(a)-(d). For a comprehen-
sive analysis, the performance of COPM is evaluated in both
noisy and denoised cases, and noise cancellation is achieved
by PNEM. As can be seen, after eliminating noise, COPM
exhibits obvious advantages in estimation accuracy for all
simulation environments. This can be explained by the fact
that ÃK has a larger aperture than ÃN̄ . Notably, even with-
out denoising processing, the performance degradation of
COPM is very weak at high SNRs, as shown in Figs. 2(c)
and (d). But when it comes to the low SNR regime, COPM
without denoising suffers from a loss of accuracy, especially
with a large number of snapshots.

5. CONCLUSION

For NAs, two co-array-based SMWE-type methods, i.e.,
COPM and PNEM, are proposed as computationally efficient
schemes for DOA estimation and noise elimination, respec-
tively. In comparison with the EV method, PNEM provides
more accurate estimates in overdetermined cases and shows
comparable performance in underdetermined cases. Com-
pared with SS-MUSIC and PNS-OPM, owing to the efficient
use of the co-array aperture, COPM exhibits advantages in es-
timation precision after eliminating noise. Additionally, even
without denoising processing, the simulations demonstrate
that COPM has almost no loss of accuracy at high SNRs.
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