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1. MOTIVATION

Challenges in Text-to-Speech (TTS) Systems
 TTS systems must convert varied text forms into a canonical format for accurate synthesis.
» Contextual ambiguities in text pose significant challenges in normalization.
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Text-to-
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Innovations of TNFormer

Single-Pass TN: Efficiently identifies and normalizes Non-Standard Words (NSWs) in one go.
Multilingual Support: Effectively handles normalization for both English and Chinese datasets.
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Text
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Context-Driven: Capable of understanding the surrounding context to improve accuracy.

2. RELATED WORK

Traditional Methods
Rule-based systems and WFSTs often struggle with context-
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3. PROPOSED APPROACH

Two Examples:
English example:

TNFormer Model
A decoder-only Transformer architecture designed for single-pass text normalization. | ' i
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Input text TN outputs

Key Features
Leverages pre-trained GP -2 models fine-tuned for English and Chinese languages.
Employs position markers and a <tnstart> token to facilitate the normalization process. | . |
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Outputs normalized text alongside position information. Input text

Chinese example:

° TN outputs

TNFormer Model: Source Text Validation:

Source Text Validation

It has offerings in the big block , Small block , circle track ,
LSX, LS, and E ROD categories .

Input text | <tnstart> | TN outputs | <eos>
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» Accuracy Verification: Ensures the transcribed source text
matches the predicted start and end positions.

- Incorrect source text:

Decoder Block
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«  Error Correction: In cases of discrepancies, the source text is . l
re-transcribed to align with the correct positions. Decoder Block Validated source text: <post7>LS<norm>
» Handling Omissions: Detects and reintroduces any missing N S S B S N B S Normalized text (new): L Ts<posts>

<tnstart>

<bos> | Input text TN outputsé

elements in the input text sequence.

4. EXPERIMENTS 5. CONCLUSIONS
Datasets Performance on GoogleTN test set Model Efficacy
. . 4 Model Sentence Accuracy (%) « Effectively transforms text normalization
English: Google Text Normalization dataset (GoogleTN) Duplexrtel %841 into a next-token prediction problem.
« Chinese: FlatTN and an in-house developed Internal e amaebass et [ o796 enhancing efficiency.
Chinese TN Dataset TNFormer-En 98.27

Exhibits strong performance across

Methodology different languages without being explicitly
- | 3y | | Performance on FlatTN test set (F1-score) designed for multilingual support.
» Position markers assigned to facilitate normalization based Category FlatTN [18] | TNFormer-Zh
A . - - PUNC 0.9965 0.9943
on space-delimited words; Chinese text pre-tokenized. MINUTE CARDINAL | 0.9851 09907 Future work
. : . POINT 0.9689 0.9823
* Models trained on respective datasets using TensorFlow CARDINAL 0 964 0 9398 » Handling more complex text and
and the Transformers library. DIGIT 0.9527 0.9807 multilingual mixtures.
SLASH_PER 0.9412 0.9375 _ _ _
R It HYPHEN_RATIO 0.9375 0.9565 Integrating with covering grammars to
esSults VERBATIM 0.9057 0.9183
| HYPHEN RANGE 0 8590 09226 handle unrecoverable errors.
 TNFormer demonstrates superior performance compared HYPHEN.IGNORE 0.8428 0.9548
to several existing models. _
Ablation study More questions?
Configuration| GoogleTN | FlatTN | Internal * Forinquiries or further information about
normal 98.27 93.26 | 97.33 TNFormer, please contact {shenbinbin,
w/o src text val 97.92 91.79 | 95.22 wangjie50}@xiaomi.com




