Unsupervised Learning of Neural Semantic Mappings with the Hungarian Algorithm for Compositional Semantics

Xiang Zhang¹, Shizhu He², Kang Liu², Jun Zhao²

The "Compositional Semantics" usually denotes that the underlying semantic theory is compositional, in which a large expression has the meaning composed by those meanings of smaller expressions.

The compositionality is claimed to be a crucial feature of the natural languages but is only strictly defined in the formal languages. Thus, the latter usually serve as the semantical notations/representations for natural languages.

Attentio

Method

The Hungarian algorithm solves the assignment problem in multinomial time. By casting the mappings into assignments, each attention weight matrix defines an optimization problem as:

$$\max_{A} R(A) = \sum_{a_{ij} \in A} a_{ij} w_{ij}$$

s.t. $a_{ij} \in \{0,1\}, \sum_{j} a_{ij} \le 1, \sum_{i} a_{ij} \le 1$

Results (Performance)

Table 1. Acc (%) on various Dev splits of SQuALL data. Setup Dev2 Dev3 **Dev0** Mean Softmax 40.6 44.8 43.6 46.9 44.2 45.2 + Sup Loss 43.4 43.7 47.6 45.7 45.4 **46.4**

		+ Annealing	38.6	41.6	39.5	40.6	44.7	41.0
		+ Hungarian	43.5	47.2	42.7	44.3	46.4	44.8
		SparseMAX	36.6	40.1	35.8	35.0	39.2	37.3
		+ Sup Loss	42.7	46.3	43.6	44.4	45.0	44.4
	SELECT setup FROM table1	+ Hungarian	42.3	44.6	40.8	43.4	45.5	43.3
Compositional Semantics	ORDER BY dev0 DESC LIMIT 1	Oracle	59.5	64.0	59.5	58.7	61.0	60.5
		+Sup Loss	61.8	65.4	61.4	60.8	62.5	62.4
		1. The best remapping arc zero attentio	s with s	supervis	-			
Reverse Hungarian		2. Our Hunga						•
Table 3 . Results (Acc, Gini) on the merged dataset with ATIS, Geo, Scholar, Advising		including Sp very close to					ey are a	also
Setup Dev Test Gini	Results (Decoded Mapping)		Resu	lts (S	Spar	sitv)		
Seq2Seq 71.35±1.13 69.87±0.81 0.8199		Fable 2 . Gini in					us setu	ps.
+ Hungarian 65.81±1.73 64.52±0.95 0.8757		Setup	S-Q		5-T	Q-T		T-Q
+ Reverse Hungarian 71.50 ±0.80 70.42 ±1.26 0.8535	0.8	Softmax	0.7685	0.8	8272	0.9141	0.	.9013
1. The reverse Hungarian tweak does	0.6	+ Sup Loss	0.4885	0.2	2490	0.2351	0.	.3499
not find the optimal solution to build an		+ annealing	0.8949	0.9	9091	0.9648	0.	.9981
attention loss but finds the worst	0.4	+ Hungarian	0.4455	0.2	2368	0.1327	0.	5577
solution to remove the least possible mappings as noises from the attention.	0.2	SparseMAX	0.9004	0.8	8280	0.8295	0.	9010
2. The simple tweak is applicable to		+ Sup Loss	0.5434	0.2	2497	0.2506	0.	4166
datasets which cannot be reduced to 1-	0.0 Softmax Supervised Loss Annealing Hungarian SparseMAX	+ Hungarian	0.5892	0.3	3023	0.2700	0.	.6970
to-1 assignment problem.	■ SQL-Question ■ SQL-Table ■ Question-Table ■ Table-Question	Oracle	0.0173	0.7	7409	0.7157	0.	8426
3. The reverse tweak encourages the sparsity moderately (to 0.8535), but also		+ Sup Loss	0.0178		7467	0.7240		.8235
improves the results when manual labels are not available.	The Hungarian tweaks significantly improve the recall for Table-Question attentions, i.e., more then on the SQL-Question attention (only a few are labeled as							
	correctly, only left behind the Supervised training.	real mappings, The Hungarian Sparsity and en	n tweak	(s can re	educe t	the unwa	•	S-Q

CASIA

¹School of Artificial Intelligence, University of Chinese Academy of Sciences The Laboratory of Cognition and Decision Intelligence for Complex Systems, Institute of Automation, Chinese Academy of Sciences