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Find the setup that achieves 
the best performance on Dev0 
in Table 1

SELECT setup FROM table1 
ORDER BY dev0 DESC LIMIT 1

Encoder

Goal
INPUT: natural language (NL)

 OUTPUT: formal language (FL)
such that: they have equivalent semantics.

According to the Compositional Semantics, 
we assume there are mappings between 
the surface forms of the input and output.
The Hungarian algorithm is brought to find 
the mappings without human labels.

Compositional Semantics

Method
The Hungarian algorithm solves the 
assignment problem in multinomial time. 
By casting the mappings into assignments, 
each attention weight matrix defines an 
optimization problem as:

Results (Performance)

Setup Dev0 Dev1 Dev2 Dev3 Dev4 Mean
Softmax 40.6 44.8 43.6 46.9 45.2 44.2
+ Sup Loss 43.4 47.6 43.7 45.7 46.4 45.4
+ Annealing 38.6 41.6 39.5 40.6 44.7 41.0
+ Hungarian 43.5 47.2 42.7 44.3 46.4 44.8
SparseMAX 36.6 40.1 35.8 35.0 39.2 37.3
+ Sup Loss 42.7 46.3 43.6 44.4 45.0 44.4
+ Hungarian 42.3 44.6 40.8 43.4 45.5 43.3
Oracle 59.5 64.0 59.5 58.7 61.0 60.5
+Sup Loss 61.8 65.4 61.4 60.8 62.5 62.4

Table 1. Acc (%) on various Dev splits of SQuALL data. 

Setup S-Q S-T Q-T T-Q
Softmax 0.7685 0.8272 0.9141 0.9013
+ Sup Loss 0.4885 0.2490 0.2351 0.3499
+ annealing 0.8949 0.9091 0.9648 0.9981
+ Hungarian 0.4455 0.2368 0.1327 0.5577
SparseMAX 0.9004 0.8280 0.8295 0.9010
+ Sup Loss 0.5434 0.2497 0.2506 0.4166
+ Hungarian 0.5892 0.3023 0.2700 0.6970
Oracle 0.0173 0.7409 0.7157 0.8426
+ Sup Loss 0.0178 0.7467 0.7240 0.8235

1. The best results are obtained by Oracle, where only 
mapping arcs with supervised labels will receive non-
zero attention weights.
2. Our Hungarian tweaks surpass sparse baselines, 
including SparseMAX and Annealing.  They are also 
very close to the supervised training.

Results (Sparsity)
Table 2. Gini indices on Dev0 splits for various setups.

The supervised training and the Oracle indicate the 
attentions are not that significantly sparse, especially 
on the SQL-Question attention (only a few are labeled as 
real mappings, most of them are not related).
The Hungarian tweaks can reduce the unwanted S-Q 
sparsity and encourage the T-Q attentions.

Results (Decoded Mapping)

Figure 1. Gini indices on Dev0 for various setups.

The Hungarian tweaks significantly improve the 
recall for Table-Question attentions, i.e., more then 
40% mappings of table-question are predicted 
correctly, only left behind the Supervised training.

Reverse Hungarian

Setup Dev Test Gini
Seq2Seq 71.35±1.13 69.87±0.81 0.8199
+ Hungarian 65.81±1.73 64.52±0.95 0.8757
+ Reverse 
Hungarian 71.50±0.80 70.42±1.26 0.8535

Table 3. Results (Acc, Gini) on the merged 
dataset with ATIS, Geo, Scholar, Advising

1. The reverse Hungarian tweak does 
not find the optimal solution to build an 
attention loss  but finds the worst 
solution to remove the least possible 
mappings as noises from the attention.
2. The simple tweak is applicable to 
datasets which cannot be reduced to 1-
to-1 assignment problem.
3. The reverse tweak encourages the 
sparsity moderately (to 0.8535), but also 
improves the results when manual labels 
are not available.
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The “Compositional Semantics” 
usually denotes that the underlying 
semantic theory is compositional,
in which a large expression has the 
meaning composed by those 
meanings of smaller expressions.

The compositionality is claimed to 
be a crucial feature of the natural 
languages but is only strictly defined 
in the  formal languages. Thus, the 
latter usually serve as the semantical 
notations/representations for 
natural languages.
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