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Executive Summary

We report a multi-harmonic histogram method for extracting and analyzing electric network fre-
quency (ENF) signals to identify power grids. Given a voltage-time measurement of a power grid
with a base frequency f0, we compute the ENF signals at multiple harmonic locations kf0 and
extract (i) a histogram of the magnitudes of the ENF; (ii) a histogram of the signal power and
noise power surrounding the ENF; (iii) a histogram of the signal-to noise-ratio (SNR) of the ENF.
Different from existing methods which use spectral-combining techniques to compress multiple har-
monics into one single ENF, the proposed multi-harmonic histogram method retains significantly
richer information which allows one to perform classification. At the classification stage, we propose
a histogram matching method with a multi-layer decision rule for identification. On the practice
data set consisting of 50 testing samples, we achieve 92% overall accuracy.

1 Introduction

This report studies the usage of Electric Network Frequency (ENF) as a mean to classify multimedia
signals observed over different power grids [1]-[2]. ENF is the supply frequency of the electric
network. In North America, the nominal ENF value is 60Hz, whereas in other countries, the
nominal ENF value is 50Hz. Nominal ENF values are typically constants over time and are thus
not very useful. The one we use is the instantaneous ENF, which has been considered as an
important classification signature of power grids [3] because every power grid has a distinctive
flow dynamics and frequency control scheme. Besides power, audio recordings are also used as
ENF exists and can be extracted from the audio recordings [4]. The goal of this year’s SP cup
competition is to classify 9 power grids based on the power and audio recordings, and to build a
sensing circuit to collect power recordings.

Grid classification based on ENF analysis has been previously reported in [3, 4, 5]. The basic
idea is to perform the following steps in sequence: (i) Extract the ENF signal from the raw data;
(ii) Extract features (e.g., mean, variance, wavelet coefficients, etc) of the ENF signal; (iii) Build a
support vector machine (SVM) for classification, and return “None of the above” if the confidence
score is below certain threshold. This method works reasonably well for power recordings, but we
observe the following limitations.

• Harmonics. ENF exists at multiple harmonics. While it is possible combine all harmonics
into one single ENF using the spectral combining technique [6], we find that the performance
gain is limited.

• Weak ENF. In some audio recordings, the ENF is surrounded by heavy noise. Extracting the
ENF and finding meaningful features are challenging.



• Limited Training. There are only two half-hour recordings for audio training data, which is
inadequate in terms of variety and duration. Training on these data will likely lead to overfit
considering the number of features (16 as reported in [5]).

The method we present in this report mitigates the above problems by using a different approach.
Our approach, called the multi-harmonic histogram classification method, bypasses the need of
combining multiple harmonics into one single ENF, the need of extracting ENF features as in [6]-
[5], and the need of using an SVM. On the practice data set consisting of 50 testing samples, we
achieve 92% overall accuracy.

The rest of this report is organized as follow. In Section 2 we discuss the extraction of the
ENF signals and show examples of the multi-harmonic histograms. In Section 3 we discuss the
classification system. Section 4 presents the hardware circuit we built and analysis results of the
data collected.

2 Extraction of ENF Signals

In this section we discuss how ENF signals are extracted. We will also discuss how to extract the
multi-harmonic histogram from the ENFs.

2.1 ENF Extraction

ENF is the instantaneous frequency of a given signal. Starting with the voltage-time signal x(t)
with discrete time samples x(t1), . . . , x(tN ), we compute the discrete short-time Fourier transform
(STFT) to obtain

X(fℓ, tn) =

∞∑

τ=−∞

x(τ)w(τ − tn)e
−j2πfℓτ ,

where w(t) is a window function, and fℓ denotes the ℓ-th frequency at which the STFT is computed.
We call X(f, t) the spectrogram of the input signal x(t), and we define S(f, t):

S(f, t)
def
= 20 log10 |X(f, t)|

as the instantaneous power spectral density.

Extracting ENF from S(f, t) can be done by identifying the frequency at which the maximum
S(f, t) occurs, averaged with its neighboring values [6]:

fENF(t) =

∑L2

ℓ=L1
S(fℓ, t)fℓ∑L2

ℓ=L1
S(fℓ, t)

, (1)

where

L1(t) =
(fmax(t)−∆)nFFT

Fs
, L2(t) =

(fmax(t) + ∆)nFFT

Fs
,

with Fs being the sampling frequency (1000Hz in this report), ∆ is the frequency perturbation
(typically 3 Hz), nFFT is the number of Fast Fourier Transform (FFT) points (8Fs in this report

with a window of length 10Fs), and fmax(t)
def
= argmax

f
|S(f, t)| is the frequency at which maximum

S(f, t) occurs. An example of the extracted ENF is shown in Figure 1.
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Figure 1: (a) Spectrogram of Grid B-1 / power recording. (b) Extracted ENF.

2.2 Multi-Harmonic Histogram

The ENF extracted in (1) is a vector of frequencies fENF = [fENF(t1), . . . , fENF(tN )]T . For large
N , one can treat these entries {fENF(t1), . . . , fENF(tN )} as samples drawn from a non-parametric
distribution p(f). Suppose we discretize p(f) into L bins, p(fℓ) is then the count of elements falling
into the ℓ-th bin (ℓ = 1, . . . , L), yielding

p(fℓ) =

N∑

n=1

I

(
fENF(tn) ∈ [fℓ − δ, fℓ + δ]

)
, (2)

where δ defines the width of each bin. The non-parametric function p(fℓ) is called the base-
frequency histogram of the ENF.

Multi-harmonic histogram is a simple extension of the base-frequency histogram. Suppose there
are K harmonics in the spectrogram, we define the k-th harmonic histogram as

p
(k)
freq(fℓ) =

N∑

n=1

I

(
f
(k)
ENF(tn) ∈ [fℓ − δ, fℓ + δ]

)
, k = 1, . . . ,K (3)

where f
(k)
ENF(t) is the ENF extracted around the k-th harmonic. For power recordings, we observe

that only odd harmonics (i.e., k = 1, 3, 5, 7) are significant.

The frequency histogram p(fℓ) is a summary statistics of where the peak frequencies are located.
This alone is inadequate for the classification because it does not tell how good these peak frequen-
cies are. To increase the set of useful statistics, we consider three additional histograms, namely
the signal histogram, the noise histogram, and the signal-to-noise histogram.

At every time stamp t, we define v(k)(t) as the signal strength of the k-th harmonic:

v(k)(t)
def
=

∑

ℓ=Ωv

|X(fℓ, t)|, (4)

where Ωv = [(kf0 −∆), (kf0 +∆)]nFFT/Fs, with f0 being the base-frequency. Similarly, we define
the noise strength as

η(k)(t)
def
=

∑

ℓ∈Ωη\Ωv

|X(fℓ, t)|, (5)
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where Ωη = [(kf0 − ∆′), (kf0 + ∆′)]nFFT/Fs, for ∆′ > ∆. Intuitively, v(k)(t) and η(k)(t) can be
thought of as the sum of the spectral values in two different regions: Ωv is the set of frequencies
that contains significant “signal”; Ωη\Ωv is the set of of frequencies that contains only “noise”.
With v(k)(t) and η(k)(t) we can also define the signal to noise ratio at the k-th harmonic as

r(k)(t)
def
=

v(k)(t)

η(k)(t)
. (6)

Consequently, we can define the signal histogram p
(k)
signal(v), the noise histogram p

(k)
noise(η), and the

signal-to-noise histogram p
(k)
SNR(r). Figure 2 illustrates the histograms of the signal-to-noise ratio.

It is clear that for different harmonics, the histograms of each grid behave drastically different.
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Figure 2: Histograms of the signal-to-noise ratio for power recordings B, E, H.

Remark: The four histograms p
(k)
freq(fℓ), p

(k)
signal(v), p

(k)
noise(η) and p

(k)
SNR(r) all have different number

of bins and ranges. Specific values can be seen in the MATLAB attachment.

3 Location Classification / Identification System

In this section we present our classification system. Our classification system consists of three major
steps: (1) Preliminary classification to determine whether the signal is power or audio, 50Hz or
60Hz; (2) Multi-harmonic histogram comparison to return scores for each test; (3) Decision making
to make the final decision.

3.1 Power/Audio, 50Hz/60Hz

Classification between power and audio is based on the observation that power signals usually have
significantly stronger signal to noise ratio than audio signals, especially around the harmonics.
Therefore, our classification method is to compute the signal strength and noise strength at a set of
designated frequency locationsK = {50, 60, 100, 120, 150, 180, 200, 240, 250, 300, 350, 360, 400, 420, 450}
Hz. We define the signal and noise power as

signal power =
∑

k∈K

N∑

n=1

v(k)(tn), noise power =
∑

k∈K

N∑

n=1

η(k)(tn). (7)

4



If the signal power is significantly larger than the noise power, we return the decision that the grid
is power. Otherwise it is audio. This can be summarized as

signal power ≷
power
audio noise power.

Classification between 50Hz versus 60Hz is done similarly. The idea is to compare the signal to
noise ratio at harmonics of 50Hz and harmonics at 60Hz. Letting K50 = {50k | k = 1, 2, 3, 4} and
K60 = {60k | k = 1, 2, 3, 4}, we compute

r60 =
∑

k∈K60

N∑

n=1

r(k)(tn), r50 =
∑

k∈K50

N∑

n=1

r(k)(tn), (8)

and make the decision based on
r60 ≷60Hz

50Hz r50.

Remark: In practice, the summations in (7) and (8) are approximated using a single FFT on
the entire recording data. A single FFT is computationally more efficient than short time Fourier
transform.

3.2 Multi-Harmonic Histogram Comparison

The main classification is based on a list of scores measuring the distances between the trained
histograms and the testing histograms. Given a training histogram p(x) and a testing histogram
q(x), we the L1-norm as the distance metric, defined as

d(p, q) = ‖p− q‖L1

def
=

L∑

ℓ=1

|p(xℓ)− q(xℓ)|,

where L specifies the number of bins in the histograms p(x) and q(x). We have also experimented
with other distance measures such as the KL divergence. But the difference is insignificant.

In our classification system, we have four histograms: (i) frequency location; (ii) signal strength;
(iii) noise strength; (iv) signal to noise ratio. Each of these are repeated calculated for all harmonic
locations. Specifically, for every power grid i = 1, . . . , 9 (stands for Grid A to Grid I), and every
harmonic k = 1, . . . ,K, we define the following four distance scores

Dfreq(k, i) = d
(
p
(k)
freq,i , q

(k)
freq

)
, Dsignal(k, i) = d

(
p
(k)
signal,i , q

(k)
signal

)
,

Dnoise(k, i) = d
(
p
(k)
noise,i , q

(k)
noise

)
, DSNR(k, i) = d

(
p
(k)
SNR,i , q

(k)
SNR

)
.

To aggregate the K harmonics into one single score, we compute the maximum over all harmonics:

D̃freq(i) = max
k

Dfreq(k, i), D̃signal(i) = max
k

Dsignal(k, i),

D̃noise(i) = max
k

Dnoise(k, i), D̃SNR(i) = max
k

DSNR(k, i).

Clearly, D̃freq(i), D̃signal(i), D̃noise(i) and D̃SNR(i) are scores of the i-th grid (i = 1, . . . , 9).
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3.3 Final Decision

The final decision is based on the following combined score:

D̂(i) = 3D̃freq(i) + D̃signal(i) + D̃noise(i) + D̃SNR(i). (9)

Here, the factor 3 in front of D̃freq(i) is used to emphasize the equal importance of the frequency
histogram as compared to the other three histograms.

To incorporate the case of “None of the above”, we set a simple threshold on the scores:

D̂(i) =

{
∞, D̃signal(i) > α, or D̃signal(i) > α, or D̃signal(i) > α

D̂(i), otherwise
(10)

for some threshold α (We choose α = 0.995). The final decision is

i∗ = argmin
i

D̂(i). (11)

If D̂(i) = ∞ for all i = 1, . . . , 9, we return “N” as none of the above.

3.4 Modification for Audio

For audio recordings, we observe that it is more robust to locate the first K peaks instead of a fixed
set of K harmonics. Moreover, the score is computed using the mean-squared summation instead
of the maximum

D̃freq(i) =

(
∑

k

Dfreq(k, i)
2

)1/2

. (12)

The corresponding α is tuned as α = 0.8.

3.5 Testing Results

On the practice dataset, our algorithm returns the following sequence

AHCNF,BGIND,AFBDC,IINAE,HBBAD,NGNGB,DDNHG,EAIHI,EHECF,FNGEI

This yields 46/50, i.e., 92% correctness. The wrongly classified grids are:

• 4: (power) Ours: F; True: N

• 17: (power) Ours: I; True: N

• 26: (audio) Ours: N; True: C

• 33: (audio) Ours: N; True: C

Based on this result, we observe that the proposed algorithm is less reliable when encountering
“None of the above”.

On the actual competition dataset, our algorithm returns the following sequence

NDDND,NNDAF,ANGBG,BFCEH,GHHNG,HFDAI,DNFHI,IECBD,EIIBE,FGNAG

NIIIG,HAEFC,CNFDG,CECGI,EICDN,BDBHA,DINNG,AABIH,NNDBA,GBFBB
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4 Circuit Design and Data Analysis for ENF Acquisition

In this section we discuss the hardware implementation for the sensing circuit.

4.1 Circuit Design

The ENF data was acquired using a circuit that consists of a digital to analog (A/D) converter
provided by the Arduino Uno, a clock provided by Raspberry Pi, and a few discrete components,
as shown in Figure 3 and Table 1. Within a closed box we have the transformer in series with a
fuse connected through a cord to the wall outlet. The transformer steps down the outlet voltage
to about 20V peak to peak (Vpp). This then connects to a circuit constructed on a prototyping
shield for the Arduino.

Component Function

1kΩ Resistor (R1) Current limiting resistor for the status LED
3.9kΩ Resistor (R2) Pull down resistor for the push button
10kΩ Resistor (R3) Pull down resistor for the clocking signal
1kΩ Resistor (R4) Current limiting resistor for the power LED
10kΩ Resistor (R5) Resistors R5 and R6 are used to further step down the voltage

to 5V peak to peak
33kΩ Resistor (R6) Refer to R5
First 470Ω Resistor (R7) Resistors R7 and R8 are used to add a 2.5V bias to the signal

so that the signal oscillates between 0 and 5V
Second 470Ω Resistor (R8) Refer to R7
.01uF Capacitor (C) Decoupling capacitor for the Arduino input
Push Button (SW) Push button to start and stop data capture
Status LED (LEDr) LED to signal when the circuit is capturing data
Power LED (LEDg) LED to signal when the Arduino shield has power
Transformer (T) Transformer to step down the voltage to about 20V peak to

peak
.5A Fuse (F) The fuse was added to insure that no part of the circuit would

be destroyed from a short circuit

Table 1: Discrete components

The Arduino shield has a collection of resistors and a capacitor, which work to insure the signal is
readable by the Arduino. Two resistors (R5 and R6) are implemented to step down the transformer
output voltage from 20Vpp to 5Vpp centered at 0V. Resistors R7 and R8 are then used to provide
a 2.5V bias to the circuit so that signal being fed to the Arduino oscillates between 0 and 5V. The
.01uF was added as a decoupling capacitor for a proper reading from the Arduino. The shield also
has a push-button switch to activate the measurement code on the Arduino. One red LED tells
the user data is being captured, and a green LED shows that there is power to the shield.

4.2 Data Analysis

We collected power recordings in West Lafayette, Indiana on Jan 5, 2016. A snapshot of 20 minutes
of the data is shown in Figure 4. The data sampling frequency for the device we use is 1093 Hz,
which can be improved to match 1000 Hz if we use a dedicated clock instead of the Raspberry Pi.
In Figure 4, we observe that our collected data is clean and produces a high quality spectrogram.
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Figure 3: A schematic diagram of the circuit and the actual hardware.

Running the power/audio and 50Hz/60Hz classification, we can easily see that the signal is power
with 60 Hz, which matches our expectation as it is collected in North America.
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Figure 4: The spectrogram, the frequency response and the extracted ENF of our collected data.

Comparing our collected data with the training set, we show the ENFs of Grid A, Grid C and
Grid I (all are 60 Hz) in Figure 5. By eye inspecting the ENF of the collected data and comparing
against the training data, we find it very difficult to differentiate between A, C and N. We believe
that our data belongs to grid C because of the slight similarity in the temporal pattern. However,
such conclusion is not validated because if we plot the training data of a longer time, the same
temporal pattern would occur also for A.

We ran the proposed algorithm on this data. The result was “N”. From our experience and
the fact that the algorithm has low reliability in classifying “C” versus “N”, we are not completely
surprised by such result. In fact, if the algorithm returns an “N”, it is not unlikely that the actual
answer is “C”. Again, without any ground truth location of the training data, we cannot justify
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any of these claims. One possibility to cause the ambiguity is that although “C” is “US East”
(based on our guess), it may be recorded in a different part of the US East than our data (which is
collected in central Indiana). Some local behavior of the grid may cause some unexpected results
to the grid classification problem.
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Figure 5: Extracted base ENF of Grid A, Grid C and Grid I.

5 Conclusion

We presented a multi-harmonic histogram method for classifying 9 power grids from its power and
audio recordings. The multi-harmonic histogram method demonstrated effective and robust classi-
fication performance on the practice dataset. While it is unclear about the algorithm’s performance
on the actual competition data, the failure cases on the practice data show that the algorithm is
less reliable on classifying “C” and ”N”.

On the hardware design, we built a sensing circuit and measured power recordings in West
Lafayette, Indiana. Our circuit consists of a transform, an Arduino Uno for A/D conversion, a
Raspberry Pi for clock, and a number of discrete components. Compared to the training datasets,
we believe that our collected data best matches with Grid C, although our algorithm returns “N”.

Appendix: MATLAB Code Overview

The MATLAB consists of two major parts: (1) Training; (2) Testing. The suggested procedure of
using the MATLAB code is to first run

>> trainAudio; trainPower;

In both files, the folder name of the training data should be changed accordingly. We assume
that the training data follows the naming structure as the one posted online. When running
trainAudio.m and trainPower.m, a folder ./hist_data/ storing the trained histograms will be
created in the current directory.

To test the algorithm, we suggest running the script main.m. Running main.m will display the
estimated output on the screen.

The two testing functions testPower and testAudio require trained histograms (which should
have been stored in ./hist_data/). The output argument of the two functions include various
scores, which are only used for debugging.
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