GENEFORMER: LEARNED GENE COMPRESSION
e S, USING TRANSFORMER-BASED CONTEXT MODELING
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@ Introduction \ @) i

Multi-level-grouping method

The development of gene sequencing technology sparks an explosive growth of gene

data. Thus, the storage of gene data has become an important issue.  We combined 3 kinds of grouping methods including FG,BG and NG to improve our
As learning based entropy estimation combined with dynamic arithmetic coding has compression and decompression process and call the combination multi-level-
been applied in multi-media file compression, we propose a transformer-based gene grouping method. o \
compression method named GeneFormer. the (K-1)-th g“’“l,,’/: thle if—th group :\\the (K-+1)-th group
Specifically o LoD
 We are the first to introduce transformer structure for the problem of gene N-gram Grouping|
compression. We introduce latent array into transformer-xl for the problem of gene A - c [l .
compression. Sl | |
* We design a multi-level-grouping method combining three grouping methods to - D 1
improve compression ratio and reduce latency. SO '
* Our model achieves state-of-the-art compression ratio, and is significantly faster ' H """" ﬂ

than all the existing learning-based methods.
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* Fixed-length grouping (FG). We divide the gene sequence into groups and fix the
length of bases for all the groups to trade off bpb and decoding latency.
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1500 * Byte-grouping (BG). Each byte is projected into h/g-dim vector space. Then they
+000 : concatenate g adjacent bytes into a h-dim vector. So that compared to the original way,
500 . . .
this byte-grouping method can extend the context length for g times.
0
0  0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 * N-gram grouping (NG). We group the bases before feeding them into the embedding
Bit Per Base
t layer.
* The bpp-time cost of different methods. o /
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@ ) Experiments
M ethOdOlOgy We train and test our method on two datasets in the experiment to prove
. the superiority of our method.
: Datasets
: ) .  Human dataset(contains 1000 human complete mitochondrial sequence)
. oncate
One-H.Ot: : Featurelﬂ COeC > G?:CF(?;::H * Fish dataset(contains 2851 mitochondrial sequences of various fish specie)
Encoding . ° __I_I Feature Generator\‘\\\
‘ Fj Iy I ———————— b . Results:
i BN — . Entropy Model _]_L \
i 1D cony u Max Pooling | H ' Concate —_Fully Connected |
ATCGA .. 167¢ 1 T — I |:> i |:r’|§ H | I' o GeneFormer 11 . Cross-Entropy -
H AL I:> Encoder }E>:ZEI Layer > Loss Method Name Human(bpb) Hunéa(:ls(t}“lme Fish(bpb) Fish(Time Cost)
= I it il |f _________________ G-zip 1.4232 0m0.15s 2.446 0m0.62s
Frooding [ WX G - e o 7zip 0.091 0m0.38s 1.2371 0m3.43s
Feature; | @@{ GeneFormer }~ ngs bzip2 0.3558 0m0.22s 2.0303 0m0.44s
- MFCompress 1.5572 Om1.56s 1.4119 OmS5.44s
. - Genozip 0.136 Om2.36s 1.2869 Om1.87s
DeepDNA 0.0336 49m3S3s 1.3591 133m14s
DNA-BILSTM 0.0145 S56m4’7s 0.7036 146m34s
GeneFormer(ours) 0.0097 82m18s 0.6587 232m357s
GeneFormer+Byte-grouping(ours) 0.0075 84m34s 0.4085 229m07s
* Wepr neFormer mpr nom n . GeneFormer contain -level-
e propose GeneFormer to compress genome sequence data. GeneFormer contains GeneFormer+Multi-level 0.01 11045 0.4794 20m00s
two main components, a CNN-based feature generator to learn a latent representation, FOLEZeUE)
_ DeepDNA (hybrid dataset) 0.0701 - 1.1999 -
a transformer-based entropy model followed by a linear layer and softmax layer to DNA-BiLSTM(hybrid dataset) 0.036 ) 1 055 )
predict the probability of the current base. GeneFormer(hybrid dataset) 0.0215 - 0.8634 -
 Comparisons. Based on the datasets mentioned above, we compare GeneFormer with
multiple methods including traditional methods and deeplearning-based methods.
* We design the architecture of GeneFormer on the basis of transformer-xl. The original _
_ _ * GeneFormer outperforms all other compression methods on the two datasets. The
self-attention formula is as follows: _ _ _ _
bpb of our algorithm without grouping (0.0097) is only 66.8% of the current state-of-
XWwex wxyr the-art learning-based method DNA-BILSTM [5], and only 0.7% of the popular G-zip
Attention(X,) = Softmax( X WYV
[d, method.
 Weintroduce a latent array in the GeneFormer encoder. As transformer-xl naturally y
has segment-Level recurrence mechanism, we adapt it as the "latent array” of our ~

g
encoder. After every forward propagation of input feature Xt, the GeneFormer stores @ Key Re fe rences
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