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Abstract—Tensor completion is a vital task in multi-
dimensional signal processing and machine learning. To recover
the missing data in a tensor, various low-rank structures of
a tensor can be assumed, and Tucker format is a popular
choice. However, the promising capability of Tucker completion is
realized only when we can determine a suitable multilinear rank,
which controls the model complexity and thus is essential to avoid
overfitting/underfitting. Rather than exhaustively searching the
best multilinear rank, which is computationally inefficient, recent
advances have proposed a Bayesian way to learn the multilinear
rank from training data automatically. However, in prior arts,
only a single parameter is dedicated to learn the variance of the
core tensor elements. This rigid assumption restricts the modeling
capabilities of existing methods in real-world data, where the
core tensor elements may have a wide range of variances. To
have a flexible core tensor while still retaining succinct Bayesian
modeling, we first bridge the tensor Tucker decomposition to the
canonical polyadic decomposition (CPD) with low-rank factor
matrices, and then propose a novel Bayesian modeling based
on the Gaussian-inverse Wishart prior. Inference algorithm is
further derived under the variational inference framework.
Extensive numerical studies on synthetic data and real-world
datasets demonstrate the significantly improved performance of
the proposed algorithm in terms of multilinear rank learning and
missing data recovery.

Index Terms—tensor decomposition, Bayesian Tucker model,
multilinear rank estimation, Gaussian-Wishart priors

I. INTRODUCTION

Tensor completion is widely used in high-dimensional data
analytics as it could predict the missing values by using the
hidden multilinear latent structures of the data. It found exten-
sive applications in image processing [1]-[4], data mining [5],
[6], machine learning [7], [8], and computer vision [9]-[11]. In
particular, the commonly used underlying models are Canon-
ical Polyadic decomposition (CPD) [12], [13], Tucker [14],
and tensor train/ring [15], [16]. Among these models, Tucker
decomposition is considered to be more general than CPD
since it represents a tensor as a core tensor multiplied with
factor matrices along different modes. CPD is a special case
of Tucker decomposition when the core tensor is constrained to
have a super-diagonal structure [17]. On the other hand, due
to their more complicated structures, tensor train/ring [18]-
[20] and nonlinear tensor models [21], [22] provide even more
flexibility in data modeling. However, the learned results are
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oftentimes more difficult to interpret compared to Tucker or
CPD.

Like any tensor decomposition, the most challenging prob-
lem in fitting data to the Tucker format is determining the
multilinear rank [23], [24]. If the multilinear rank is known,
various optimization techniques have been proposed [17], [25],
[26] to solve the Tucker decomposition or completion problem.
However, for real-world data, the multilinear rank of the
Tucker decomposition is usually unknown. To fill this gap,
Bayesian modelings of Tucker decomposition and completion
have also been proposed in [27] [28] so that the multilinear
rank is learned automatically together with the core tensor and
the factor matrices. Unfortunately, in these two prior works
[27] [28], only a single parameter is dedicated to the estimation
of variance for the tensor core elements. This makes them
restrictive in modeling real-world data, where the core tensor
elements may possess diverse variances.

To introduce a more flexible core in the Bayesian Tucker
model, this paper reveals an equivalent form of Tucker de-
composition as a CPD with factor matrices having a large
number of columns but being in a low-rank structure. With this
newly found relationship, the Bayesian modeling deviates from
the traditional sparsity inducing prior [27] [28] and becomes
low-rank matrix modeling, in which Gaussian-inverse Wishart
prior model is found suitable. For model learning, variational
inference method is employed to derive an iterative update
algorithm with each step having a closed-form expression.
After inference, the multilinear rank of Tucker decomposition
is revealed by performing singular value decomposition (SVD)
on the learned factor matrices. The core tensor and factor
matrices of Tucker decomposition can then be recovered
accordingly. Simulation results on synthetic and real-world
data demonstrate that the proposed equivlent Tucker model
provides more accurate multilinear rank estimation and smaller
tensor data recovery error compared to existing Bayesian and
non-Bayesian Tucker completion methods.

The remainder of the paper is organized as follows. In Sec-
tion II, a brief review on Tucker decomposition and existing
Bayesian modeling are given. In Section III, an equivalent
Tucker format and its Bayesian modeling are presented. In
Section IV, an inference algorithm for the proposed model is
derived under the variational inference framework. Simulation
results and discussions are presented in Section V, and finally
conclusions are drawn in Section VI

Notation: Boldface lowercase and uppercase letters will be
used for vectors and matrices, respectively. Tensors are written
as calligraphic letters. IE [] denotes the expectation of its ar-
gument. Superscript T denotes transpose. The operator Tr(A)



denotes the trace of a matrix A. The symbol o represents a
linear scalar relationship between two real-valued functions.
The operator ® is the Kronecker product, ® is the Khatri—Rao
product, o is the outer product, and * is the Hadamard product.
The N x N diagonal matrix with diagonal components a;
through ap is represented as Diag{ai,as,...,ay}, while
diag(A) takes the diagonal elements of A and put it as a
vector. Iy represents the M x M identity matrix. The (4, 5)""
element, the i*" row and the j** column of a matrix A are
represented by A; ;, A; . and A. ;, respectively. The (i, j,n)""
element, the n'" matrix atom of a third-order tensor ) are
represented by V; ; , and ). . ,, respectively.

II. TUCKER DEOMPOSITION AND PREVIOUS BAYESIAN
MODELING

For a third-order tensor X € R }12%13 with its (i1, 0, 43)""
entry denoted by &; the Tucker decomposition is defined
as [17]

142,939

X =Gx; AW x5 AP x5 A®)
£ [g: AV, AP, AP, (1)

where A(M) ¢ RIxB1 - A(2) ¢ RI2xR2 gpd ABG) ¢ RIsxBs
are the mode-1, mode-2 and mode-3 factor matrices, respec-
tively; G € RF1xR2xBs i the core tensor; xj; denotes the
tensor—matrix product along the k-mode [17]. The second
line of (1) is a commonly used shorthand notation for Tucker
decomposition.

The size of the Tucker core (R, Rs, R3) denotes the
dimension of the associated latent spaces. The (Ri, Rz, R3)
that leads to the minimum of 22:1 Ry, while making (1) hold
are called the multilinear rank of tensor X. On the other hand,
the unfolding operation connects tensor decompositions to
matrix operations. For example, if tensor X’ in (1) is unfolded
along the first mode, the resulting matrix is

Xy = AVG (A @ AT ¢ Rl ()

where G (1) is the mode-1 unfolded matrix of the core tensor
G. Similar expressions can be obtained if X is unfolded along
the second or third mode [17].

To automatically learn the multilinear rank from ten-
sor data in a single run, pioneering work [27] proposed
Bayesian Tucker decomposition modeling (abbreviated as
BTD) that imposes sparsity-enhanching priors on the factor
matrices {A®}3_ . More specifically, BTD specifies that
AR~ T N(AP |0, (Diag(A®))1), Wk, with each
element of )\(k) following )\Sk) ~ Gamma(ag, by), Vk. This
Gaussian-gamma hierarchical construction induces sparsity in
the columns of {A®}3_, [29], thus achieving automatic
multilinear rank determination.

Furthermore, to ensure the number of columns of A,
A® _ and A® match to the dimensions of the core tensor,
the core tensor G is modeled in a vector form vec(G) ~
J\/(Vec(g)|0, (BDiag(A®)) ® Diag(A?) ® Diag()\(l)))f1
in which 8 ~ Gamma(ag,by). Equivalently, the prior
on the (ry,rs,73)"" element of the core tensor G is
N (Gryrars |0, (BAD AL ALY =1) Although this model allows

some flexibility for the variances in the core tensor, {A(¥)}3_,
are mainly determined by the precisions of the rows of
{A®M13 . and therefore they offer limited capability in mod-
eling the variation of the core elements. Effectively, this model
only uses a single scale parameter 5 to adjust the variance
of the core tensor elements. This obviously is not flexible
enough to model all possible core tensors, and weakens the
representation ability in practical applications. Together with
Gaussian likelihood and Gamma prior distribution on the
unknown noise precision, the graphical model of the above
BTD [27] is shown in Figure 1(a).

On the other hand, another Bayesian variant (termed as
ARD-Tucker [28]) models the hyper-parameters A(*) with
non-informative Jeffreys priors instead of the Gamma priors.
While this prior could also induce sparsity and thus deter-
mine the multilinear rank automatically, the same problem of
inflexible core tensor as in [27] still occurs.

III. BAYEISAN MODEL IN FLEXIBLE CORE TUCKER
COMPLETION

Let Yo be an incomplete third-order tensor of size I; x
I x I3, where €2 denotes a set of 3-tuple indices indicating
which element is observed. Equivalently, we can define a
binary tensor O with the same size as ) as an indicator
of observed entries (if V; i,i, is observed O; i, = 1
and O,,,,;; = 0 otherwise). We assume the complete data,
denoted as ), is a noisy observation of true tensor X, that is,
Y = X + £, where each element of the noise term follows
i.i.d. Gaussian distribution, i.e., £ ~ [T, ;... N(0,a71), and
the tensor X obeys the Tucker decomposition model given
in (1). The Tucker generative model, together with Gaussian
noise assumption, give rise to the observation model

I Iz I3
p(Yalg.(a%}ioa) = [T T 11

=1 ip—=1 ig=1
Oiligi
N (yiligig‘[[g;A(1)7A(Q)?A(S)]]’iliQigaail) B

where o denotes the noise precision.

In order to introduce flexibility to the core tensor in
Bayesian modehng, we represent the core tensor G by a hl?
rank CPD: G 2 [E), 2(?) 20)] = ZL: '_()1) _(2) 2
where 21 € RE1xL =(2) ¢ RE2xL =) RR3XL are the
factor matrices of the CPD. As any arbitrary third-order tensor
could be represented by a CPD of finite rank [30], choosing
L large enough would enable the modeling of any tensor core
G. With the above flexible core structure, the Tucker model in
(3) is then represented as

I I I3

Oé) = H H H N (Visinis)

i1=1142=113=1

p(Yal{E®, A0},

[ED,=® =@ A0, A A®), ..

71)07’/112’33. (4)

If we extend the Bayesian modeling in [27] to (4), we
would impose a Gaussian prior on the columns of Z(F)
and tie its covariance to diag(A(®)), which results in the
probabilistic model shown in Figure 1(b). However, this model
is complicated as there are six matrices to be estimated with



coupling between A(®) and Z(*). This makes the inference
very challenging. In the following, we reveal an equivalent
form of (4) that allows a simplier Bayesian modeling and
inference.

Noticing that unfolding G = |
first mode gives G(;) = 21 (EG)
use of (2), we have

M_ =2 =6 )H'A(l) A®?) A(3)]](1)
:A(1)=(1 (= N —(2)) (A(S) ® A(2))T
=ANEL(ABEC) o AP EE)HT
=[AWEM, APED) AOEC)] ), )

L2 =G)] along the
2T [17] and making

=1
0=

where the second to the third lines are due to a known property
of Khatri—Rao product [17], [31], [32]. Based on (5), it is
clear that tensor [[E(M), E?) EG)]); A1 AR ABG)] equals
[AWED AREE) | AG)=G)], as they have the same size
and their mode-1 unfoldings are the same.

For notational simplicity, if we define B(*) = A®=E®) for
k = 1,2,3, (4) can be rewritten as

L I, I3

(yn|{B By ): H H H

i1=1143=113=1

Oiqigi
N <yi1i2i3|[[B(1)> B(2), B(g)]]ilizisaail) o . (6)

As BY, B®) and B®) are constructed from multiplication
of two matrices, and Ry, R», and R3 are smaller than I,
I>, Is and L, this result reveals that Tucker decomposi-
tion [G; AN AP AG)] is actually equivalent to a CPD
[BM, B, BA)] if the factor matrices B(Y), B, B®)
have a large number of columns while being low-rank.
Before we present the Bayesian modeling for learning B("),
B(Q), B® with low-rank structure, let us see how we can re-
cover the Tucker structure if we have B(Y), B® B®)_ Since
B, B®) B®) are of low-rank, they can be decomposed
using SVD: B® = UM D®Y®T for k =123, Then

[[B(1)7B(2),B(3)]]
— [UODOYOT g@p@ydT g pey e
— [DOVOT p@y@T pEyET
x 1 UD x, UP x, U, (7)

From the last line of (7), we obtain that
[DOVOT DOYET DEYVET] is  the recovered
core tensor, and UM, U®) and U®) are the Tucker factor
matrices. Furthermore, the number of non-zero elements in
DWW, D® and D® give the estimates of Ry, Ry and Rs,
respectively.

Eq. (7) in fact provides another view on why the
proposed equivalent Tucker model is more flexible than
BTD. More specifically, for the (ry,72,73)"" element of
the recovered core tensor in (7) it can be expressed as
Dfﬂl Dg)D(?’) Zl 1 v;(jl)vffgv . This shows that besides
the D,(})D,(«Q)D (which has a similar effect to )\Sl) )\52)
)\52) in BTD [27]), each element is additionally characterized

by Zz 1 Vl(jl l(fQ)Vl(fg which provides more learnable pa-
rameters and thus flexibility for adapting to different tensor
cores than using a single parameter 3 in the BTD.

With the established equivalent model in (6), the next
question is how can we model the prior of B®*) such that
low-rankness information is imposed. Fortunately, Gaussian-
inverse Wishart prior [33] can serve such a purpose. In
particular, we model B®*) ~ H LN (B, )\O,E,Zl), ¥~
Wishart(2y,|vg, ¥y), where vy, € R and W), € RIx*Ix (being
symmetric and positive definite) are fixed parameters. The
graphical model for the Bayesian Tucker using this low-rank
inducing prior is shown in Figure 1(c).

Notice that all the columns of B™*) are controlled by the
same covariance matrix 2;1 because we desire the low-
rankness of the whole matrix B(*). To see why the Gaussian-
inverse Wishart prior described above is a low-rank promoting
prior, we can compute the marginal distribution of B(*), which
is [33]

L
p(B®)) = / [TV B% 10,5 Wishart(Si vk, 1) dSs

vy +L

o @t + BRI B0 == ®)
Then the log-marginal distribution of B*) becomes

T _
logp(B®) oc —log | B B®™ 4 @1

“log|I + B® @, B®)

L
== log(h +1), ©)
=1

where ), is the [*" eigenvalue of the matrix B(k)T\IIkB(k). To
comply with the prior, (9) would be made as large as possible,
which is equivalent to ZzL:1 log(A; + 1) as small as possible.
This leads to two consequences. 1) This induces sparsity
in A\ [34]-[36], making B® &, B®) low-rank. Since ¥,
is of full rank, the low-rankness of B(k)T\IlkB(k) trans-
lates into the low-rankness of B¥), 2) Tr( )T\IlkB(k))
is the first-order approximation of log |I + B O8 v, B,
and minimizing log|I + B(k)T\IlkB(k)| also minimizes
Tr(B(k)T'IlkB(k)), which can be interpreted as introducing
manifold smoothness (defined by W) to the rows of B (k)
[37]-[39].

A common choice of ¥ in image or MRI tensor data is

¥, = FTF [40], where F is the second-order diference
operator with its (i, )" element given by
-2, 1=4j=0
Fij = { Lo li—jl=1, (10)
0, else

which basically states that correlations among neighboring
pixels exist. Another chiose of Wj to promote a smooth
solution is the Laplacian matrix, where the details can be found
in [41], [42]. Obviously, if ¥, « I, then we would have prior
on B™) induces only low-rankness but not smoothness.
Finally, with the prior of B(*) established, the probabilistic
model is completed by specifying the likelihood function of



(a)

Figure 1: Bayesian model for Tucker decomposition. a) Bayesian tensor Tucker decompostion [27]; b) Straightforwardly extend the modeling
of (a) to tensor Tucker decompositon with a flexible core; ¢) The proposed Bayesian model.

the observations, which is Gaussian with unknown precision
a ~ Gamma(c, d). Let © collects all the unknown variables,
ie, ® = {BW B® BO®) %, %, 33 a}, the joint distri-
bution of Vg and ©® is given by

= p(YalBY. B, B, a)p (BY|S:) p (1)

P (BP[%2) p(22)p (BYISs) p(Z9)p ()

X exp {Eilizizomﬂs Ino

2
_ % HO * (y -3 (B:g) B B:(f)) )

=1 F
L
L 1 O (k)
+ Y (Fuimi- 3> By 5B
k=1,2,3 =1
v — I — 1
2

1
In || — Zﬂ(\pklzk))

+(C—1)lna—da}. (11)
We term the proposed model as Bayesian Flexible Core Tucker
Completion via a hierarchical Wishart Prior (BFCTC-W).

Remark 1: Notice that the proposed format in this paper is a
new representation of Tucker, rather than a new decomposition
model. We need this new representation of Tucker because
in the conventional Tucker Bayesian model, the number of
parameters for estimating the variation of the Tucker core
is small, thus offering limited flexibility to data modeling.
With the new representation of Tucker, the core tensor can
be represented more flexibly and accurately. One may suggest
directly adding correlated priors in the core tensor of the
conventional Bayesian Tucker model to enhance the core
flexibility. However, as the multilinear rank is unknown, the
dimension of the Tucker core is not fixed in prior. This brings
a challenge on specifying the correlation priors of the Tucker

core. In contrast, the proposed representation enables both
flexible core and multilinear rank estimation.

Remark 2: Expressing the Tucker core tensor using CP format
has also been considered in [45] for developing an approximate
CPD based on the relationship between CPD and Tucker
format. However, it requires at least two factor matrices of the
CP representation of the core to be of full rank. In contrast,
the model in this paper does not require this. In fact, we
purposely makes the factor matrices of CP representation not
to be full rank, so that rank estimation can be incorporated in
the inference procedure.

Remark 3: Recently, a Bayesian model for a special case
of block-term decomposition has been developed in [44].
In general, block-term decomposition can be interpreted as
a sum of several Tucker decompositions [43]. Given that
the proposed Tucker model in this paper could estimate the
multilinear rank R, Ro, R3, one may consider extending the
model to general block-term decomposition by including an
additional sparse latent variable multiplied to the covariance
of B to indicate the presence or absence of a Tucker
component. But this extension is beyond the scope of this
work and thus is left for future study.

IV. VARIATIONAL INFERENCE ALGORITHM

In Bayesian framework, the inference of ® is based on the
posterior distribution p(©|Va) = p(Va,®)/ [ p(©,Va)dO.
However, the multiple integrations involved are generally
intractable. To tackle this, variational inference [46], [47]
is a major tool for inferring parameters of a complicated
probabilistic model. Although each of the prior of B(*)
follows Gaussian-inverse Wishart distribution, and is the same
as in conventional Bayesian matrix completion problem [33],
the joint distribution for the newly proposed equivalent Tucker
model in (11) is more complicated than that in Bayesian matrix
completion. In particular, there are three factor matrices to
be estimated in Tucker model. Furthermore, the three factor
matrices are coupled in a nonlinear way in (11). This makes



the inference algorithm very different from the simple matrix
completion problem.

A. Derivation of the algorithm

The key idea in variational inference is to approximate
the true posterior distribution p(®|)Yq) by a variational dis-
tribution Q(®) that minimizes the Kullback-Leibler (KL)
divergence:

KL(Q(©))lp(©Ya)
p(©[Va)
oonliaie o

To facilitate the KL divergence minimization, the variational
distribution Q(®) is usually restricted to the mean-field family
Q(®) =T1,, Q(©,,), where ©,, € © with UY_,©,, = O
and ﬁf\,{zl ©,, = @. Under the mean-field assumption, each
optimal variational distribution Q*(®,,) that minimizes the
KL divergence is obtained by computing [46]

exp (Eore,, [Inp (©, Vo))
f exp (EQ\Q,” [hlp (67 yﬂ)]) dem’

where ®\0,,, is the variables set in ® but excluding ©,,
Obviously, the variational distributions in (13) are coupled
in the sense that the computation of the variational distribution
of one parameter, e.g., ®,,, requires the knowledge of vari-
ational distributions of other parameters ®\®,,,. Therefore,
these variational distributions are updated iteratively. In the
following, an explicit expression for each Q(-) is derived under
the mean-field Q(©®) = Q(a) [1,, QB I, Q(Ex). To
make the presentation concise, only the results are given below
while the derivations are detailed in Appendix A.
Update of Q(B:(f)):

—1
Q (ij)) x N (ml(k), () )

Q" (®,) = (13)

(14)
where

k)"t _ -
Y = (E[Z] +Eo) -Dlag(O(k)~

-1
Om{" «m{® + dig(x(” 1))

hotk
-1
m{® = x5l {

; diag (O(k) @h#
[(Yu«)*O(k) (@m )”

h#k

emil) mi")
15)

where diag(.) takes the diagonal of the matrix and put it as a
vector, and Oy, is the mode-k unfolding of tensor O.
Update of Q(Xy):

Q(Z1) o Wishart(y,, ¥y,), (16)
where 9, and ¥}, are given by

U = v + L,

-1

L

¥, = (\Il,gl +M® (M(’“))T + ZT}’“)1> , (7
=1

m(Lk)].

with M*) = mgk) mé s
Update of Q(«):

O (a) x Gamma (c d) , (18)

Eiligig Oilizis

2 )
o 1 T
d=d+5T{(Yy) * 0))(On) * Yi))" |

c=c+

— Tr{(Y(l) * O(1)) ((M(3) o M(2))(M(1))T>}

L L
+;{;§<m§”*mg>) 0(1)9 ( (h) h))
L
+Z(

=1

_1\T
) & mll) + diag('rl(l) ))

@ (m *mlh) +d1ag(T(h)_1)) }

h#1
(19)

To compute various updates, we need a number of expectations
on different variables. For example, in the covariance of
Q(B:(f)), we need E [X;] which can be computed from (17) as
0 Wy,. For IE [, it can be computed using (18) as E [a] = ¢/d.

B. Summary of the algorithm and properties

The procedure of BFCTC-W is summarized in Algorithm
1. As Q(B™) are Gaussian disttibuted with mean M®*) =
[mgk) (Lk)] after the algorithm converges, we take M (¥)
as an estlmate of B™). To provide non-informative hyper-
priors, we set the top level hyper-parameters ¢ = d = 1076.

Also, we choose v; = v9 = v3 = 10 [33]. For the parameters
under inference, M) = E [B(k)] is initialized as SOA2
[2], where S( denotes the left singular vector matrix and
A denotes the diagonal singular values matrix from SVD of

L
Y. {T( )}l are initialized as {Tl( U . The initial
=]

covariance matrix Xy, is simply set to I and a ils initialized
by « = ¢/d. Based on the description in Section III, L should
be a large value so we take L = 150. Finally, the algorithm is
stopped when the normalized mean square error between the
estimated tensors of two adjacent iterations is smaller than
1076,

We should notice that the parameter L is set to be a fixed
value, and will not be updated in the process of inference.
This parameter is related to how flexible the core tensor is,
and has nothing to do with the multilinear rank of the Tucker
model. On the other hand, with the low-rank promoting prior
on B®*), the multilinear rank is revealed by the number of
non-zero singular values (or singular values above certain
threshold if the data is noisy) from DO, D@ DG in SVD



Algorithm 1: Bayesian Flexible Core Tucker Completion via a
hierarchical Wishart Prior (BFCTC-W)

Input: a third-order noisy tensor )
. I
nitialization: M) = [m{"),...m{"]. {8V} " .
\I/k, Vk» Ek =1,Vke [1,3], o = C/d, L
repeat:
o Update {Q(B)}L_ |, k = 1,2,3 using (14) and (15);
e Update Q(Xg), k = 1,2, 3 using (16) and (17);
e Update Q(«) using (18) and (19);
until convergence
Compute SVD of M® = Uu® pEVET The core tensor of the
Tucker decomposition is [D(I)V(I)T7 D(Z)V(Q)T, D(3)V(3>T]]
and the factor matrices are U (¥).

of MW, M®) M®)_ In this way, the multilinear rank could
be automatically learned without updating L.

In the proposed algorithm, the computational complex-
ity of the factor matrices {B(*)}}_,, the hyperparameters
{=®13_,, and the noise precision « are O(L - > 5_, Iy* +
31QI(L% + L)), 0( X} _, I*) and O(|Q|(L? + L)), respec-
tively, where |€2| denotes the number of observations. Thus the
overall computational complexity is O(L S L +AL? 12]).
On the other hand, the computational complexity of Bayesian
Tucker Completion (abbreviated as BTC [27], [48], [49],
partially observed version of BTD) is 0(22:1 IR} +
|| Hi:l R, Zi:l I};) [27]. Based on the above complexity
analysis, it can be seen that under high multilinear rank
scenarios, which are likely in real-world data, the proposed
BFCTC-W has a lower complexity order than BTC. The
numerical experiments in the next section also confirm that
the proposed algorithm run faster than BTC.

When the tensor ) is fully observed, we could directly
set O as an all-one tensor in Algorithm 1. However, directly
executing Algorithm 1 in fully observed data case is not
the most efficient way, as many expressions in Algorithm 1
can be simplified when O is an all-one tensor. It turns out
that the complexity of the proposed algorithm under fully
observed data is O( 35 _, I1* + [1;_, Ir). The details of the
simplification and the corresponding complexity analysis is
given in Appendix B.

V. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm BFCTC-W by extensive
experiments and compare it with state-of-the-art methods
including HOOI [17], [26], ARD-Tucker [28], W-Tucker [50],
CTNM [51], HaLRTC [52] and Bayesian Tucker completion
(BTC) [27], which is an extension of BTD to incomplete
data. Since this paper focuses on a new interpretation of the
Tucker decomposition and its consequences in modeling and
inference, the compared algorithms are all Tucker related.
In all the experiments, the multilinear rank parameters of
HOOI, W-Tucker and HaLRTC are set as the true rank (if
ground true is available), or we follow the default settings
suggested in these works (if ground truth is not available).
For the competing algorithms, ARD-Tucker, CTNM and BTC
can automatically learn the multilinear rank. For the proposed
BFCTC-W, multilinear rank is determined by retaining singu-
lar values in D®) if its squared value is larger than 10~* times

of the squared value of the largest singular values. For all the
experiments, the locations of the missing data are assumed to
be uniformly distributed in the tensor data. The experiments
are carried out in MATLAB R2020a on a macOS with 2.2
GHz Inter Core i7 CPU and 16 GB RAM.

A. Synthetic data

We generate two kinds of synthetic data. The first one is
when the elements of the core tensor are i.i.d. and drawn
from G\ ;pry ~ N(0,1), Vrp = 1,..,Ri, k = 1,2,3.
The second kind of synthetic data is with G, ,, », obeying
Gaussian distribution with zero mean and standard deviation
Hizl Cﬁ’:) where C,(-I,f) is independent and uniformly drawn
from {1,2,...,Ri}, Vry = 1,..., Ry and k = 1,2, 3. This case
represents the scenario where the elements of the Tucker core
have diverse variances. For both synthetic data, all elements of
factor matrices A1), A(®) and A®) are drawn from N(0, 1),
and then orthogronalization among columns was performed
such that A®)" A% = [ . As the synthetic data does
not contain smoothness among neighboring values, we choose
¥, = ¥, = ¥y = 10'9T. Gaussian noise is added to the
generated tensor data at SNR = 5dB for denoising task and
SNR = 10dB for completion task. To assess the performance,
the relative root square error RRSE= ||X — X||r/||X||F and
estimated multilinear rank (if applicable) are shown, where by
is the reconstructed tensor from various algorithms. All results
in this subsection are averaged over 200 runs on independently
generated tensors and noise realizations.

First, let us look at the case of fully observed data. We
consider a tensor size of Iy = Iy = I3 = 30 with two
multilinear rank settings: (15,15, 15) or (13,15,17). We also
consider a tensor with unbalanced dimension I, = 20, [, =
I; = 30 and with rank (5,15,15). From Table I, it can be
observed that when the core tensor elements are i.i.d., all
Bayesian algorithms (ARD-Tucker, BTC, and the proposed
BFCTC-W) give the correct multilinear rank estimate, and they
achieve similar performance, although BTC performs slightly
better. However, when the tensor core elements have diverse
variances, ARD-Tucker and BTC show degradation in rank
estimation, as their parameters {)\(k) 3_, have dual purposes
of learning the multilinear rank and the variances of different
core elements. When the core elements have diverse variances,
this leads to degraded capability of multilinear rank estimation.
On the other hand, the proposed algorithm can still give an
average of the multi-linear rank estimates very close to the
true values, and is more accurate than ARD-Tucker and BTC.
The more accurate rank estimation also translates into smaller
RRSE as shown in Table 1.

Compared with the optimization algorithms, despite the
proposed BFCTC-W does not have the knowledge of ground
truth multilinear rank, it still in general outperforms HOOI
which is equipped with perfect knowledge of multilinear
rank. This is because HOOI does not model noise separately,
thus noise is indistinguishable from the signal part and get
fitted into the model. On the other hand, for HaLRTC, the
model only fits the data to the unfolded matrix (see (2)),
thus multilinear rank information is not exploited to achieve



Table I: Rank estimation, RRSE of tensor recovery and run times from the fully observed noisy tensors at SNR = 5dB.
Tensor Setting HOOI  HaLRTC ARD-Tucker BTC BFCTC-W
averaged estimated rank - - (15,15,15) (15,15,15) (15,15,15)
i.i.d. elements RRSE 0.2199 0.4032 0.2169 0.2169 0.2241
size(30,30,30) in the core run time (s) 0.0446 4.3364 10.5141 109.0463 25.0228
rank(15,15,15) averaged estimated rank - - (12.9,12.9,12.9) (12.8,12.9,12.9) (14.9,14.8,14.8)
elements in the core RRSE 0.2277 0.3666 0.2378 0.2338 0.2153
with different variances run time (s) 0.0215 4.1212 10.4463 51.3984 26.8785
averaged estimated rank - - (13,15,17) (13,15,17) (13,15,17)
i.i.d. elements RRSE 0.2181 0.4009 0.2158 0.2150 0.2223
size(30,30,30) in the core run time (s) 0.0228 4.0901 9.8527 97.3099 26.6467
rank(13,15,17) averaged estimated rank - - (11.5,12.9,14.0) (11.3,12.9,14.2) (13,14.9,16.3)
elements in the core RRSE 0.2256 0.3661 0.2383 0.2359 0.2139
with different variances run time (s) 0.0237 4.0637 8.1619 49.7182 27.1516
averaged estimated rank - - (5,15,15) (5,15,15) (5,15,15)
ii.d. elements RRSE 0.1720 0.3758 0.1704 0.1711 0.1744
size(20,30,30) in the core run time (s) 0.0143 3.6567 6.7662 26.3378 25.9109
rank(5,15,15) averaged estimated rank - - (5,12.7,11.9) (5,12.3,12.6) (5,14.4,14.3)
elements in the core RRSE 0.1786 0.3411 0.2045 0.1984 0.1774
with different variances run time (s) 0.0147 3.6593 6.9771 25.7328 24.8938

Table II: Rank estimation, RRSE of tensor recovery and run times from the incomplete noisy tensors at SNR = 10dB.

Tensor Setting CTNM HaLRTC  W-Tucker BTC BFCTC-W
averaged estimated rank  (12,12,12) - - (10,10,10) (10,10,10)
i.i.d. elements RRSE 0.2115 0.6966 0.1688 0.1574 0.1633
size(30,30,30) in the core run time (s) 9.6557 4.3157 13.5903 1694.6 82.3652
rank(10,10,10) averaged estimated rank  (12,12,12) - - (8.8,9.0,9.2) (10,10,10)
SR =30 % elements in the core RRSE 0.2134 0.5948 0.3858 0.2061 0.1691
with different variances run time (s) 6.7027 4.3352 31.4127 1248.2 80.7936
averaged estimated rank 9,9,9) - - (8,10,12) (8,10,12)
i.i.d. elements RRSE 0.4938 0.6916 0.2323 0.1547 0.1603
size(30,30,30) in the core run time (s) 8.3659 2.7425 14.9459 1608.7 82.3668
rank(8,10,12) averaged estimated rank 9,9,9) - - (7.5,9.0,10.5) (8,10,11.9)
SR =30 % elements in the core RRSE 0.2423 0.5903 0.3728 0.1989 0.1662
with different variances run time (s) 8.2913 3.0755 32.3342 1358.8 78.4391
averaged estimated rank (3,12,12) - - (3,10,10) (3,10,10)
ii.d. elements RRSE 0.1579 0.6086 0.1694 0.1308 0.1325
size(20,30,30) in the core run time (s) 7.0098 3.7958 9.9095 436.0154 65.3670
rank(3,10,10) averaged estimated rank (3,12,12) - - (3,7.5,8.2) (3,9.9,9.9)
SR =30 % elements in the core RRSE 0.1616 0.5133 0.2155 0.2157 0.1394
with different variances run time (s) 7.0789 3.7571 25.1025 440.0624 66.7978

complexity control. This is reflected in

the obviously large
RRSE obtained from HaLLRTC.

Next, we consider incomplete noisy tensor data and the
results are shown in Table II. The tensor size is of I =
I, = I3 = 30 with rank being (10,10,10) or (8,10, 12).
We also consider an unbalanced data dlmensmn of Iy =
20, Iy = I3 = 30 with rank (3,10, 10). The observed data are
uniformly random sampled with sampling ratio (SR) = 30%
from the synthetic noisy tensor. Since HOOI and ARD-Tucker
cannot handle missing data, we compare the performance to
CTNM and W-Tucker instead (CTNM could estimate the rank
while the input rank to W-Tucker is the true rank). It can be
observed from Table II that when the core tensor elements are
ii.d., BTC performs slightly better than the proposed BFCTC-
W. This is not surprising, as BTC is a simpler model than
the proposed algorithm, and in the i.i.d. core tensor case,
the single 3 parameter in the BTC is sufficient to learn the
variance of the core elements so that { A\(F) }3_, could dedicate
their flexibility to learn an accurate multilinear rank. However,
when the tensor core elements are having diverse variances,
the proposed BFCTC-W shows unmistakably the best perfor-
mance. In particular, the proposed BFCTC-W estimates the
multilinear rank correctly for the rank (10,10, 10) while BTC
underestimates the multilinear rank. For the cases with multi-

linear rank (8,10, 12) and (3, 10, 10), the proposed BFECTC-W
gives a closer rank estimate to the ground truth compared to
BTC. This in turn reflects in the significantly smaller RRSE
achieved by the proposed algorithm compared to BTC.

When comparing to optimization-based methods, the pro-
posed algorithm achieves smaller RRSE than HaLRTC which
does not exploit multilinear rank information and CTNM
which has unstable multilinear rank estimation. For W-Tucker,
even though it is given the accurate multilinear rank, its
performance is still not as good as the proposed algorithm.

From the above results, we could see that the proposed
BFCTC-W achieves comparable performance to BTC and
ARD-Tucker if the elements of the core tensor are i.i.d.
However, when the elements of the core tensor are having
diverse variances, the proposed method not only determines
the multilinear rank more accurately than BTC, ARD-Tucker
and CTNM, but also recovers the tensor data more accurately.
This shows the wider adaptability of the proposed algorithm
under different core tensor scenarios. Finally, it is noted from
Table I and II that the proposed BFCTC-W takes even shorter
computation times than the BTC in most of the cases, making
the proposed method being a better choice than BTC in terms
of both performance and computation speed.



Table III: RRSE and PSNR of image de-noising at SNR = 5dB.

Color Image HOOI HaLLRTC ARD-Tucker BCPF BTC BFCTC-W
RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR
peppers 0.1387  23.0752 0.1390  23.0564 0.2085 19.5346  0.1337 23.3949 0.1327 23.4593 0.1051 25.4841
lena 0.1135 24.0207 0.1142 239673  0.1572 21.1915 0.1026 24.8991 0.1117 24.1595 0.0821  26.8368
barbara 0.1199 248287 0.1324 239673 0.1836 21.1276  0.1124 253903  0.1209 24.7565 0.0946 26.8918
house 0.0907 254619 0.0943  25.1238 0.1451  21.3807 0.0808 26.4623 0.0890 25.6262  0.0642  28.4688
airplane 0.0666  26.2068 0.0842 24.1700 0.1268 20.6139  0.0610 269744 0.0824  24.3577 0.0548 27.9076
sailboat 0.1357 225032 0.1345 225804 0.1854 19.7926  0.1247  23.2399  0.1409 22.1766  0.1102  24.3148
facade 0.0826  27.4062 0.0936 263203  0.1153  24.5093 0.0696 28.8881 0.0815  27.5227 0.0664  29.3082
baboon 0.1482  21.9409 0.1444 221665 0.2045 19.1440 0.1330 22.8810 0.1568 21.4509 0.1310 23.0100

Table IV: RRSE and PSNR of image completion at SR = 30% and SNR = 20dB.

Color Image CTNM HaLRTC W-Tucker BCPF BTC BFCTC-W
RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR
peppers 0.1227  24.1398  0.1275 23.8065 0.1596 21.8560 0.1011  25.8240 0.1478  22.5232  0.0837  27.4622
lena 0.0991  25.1991 0.0994 251729 0.1230 23.3225 0.0777 27.3159 0.1102 24.2770 0.0713  28.0588
barbara 0.1171  25.0339 0.1187 249160 0.1305 24.0928 0.1058 259186 0.1235 24.5717 0.0846 27.8576
house 0.0733  27.3119 0.0786 26.7056  0.0982 24.7718 0.0809 26.4539 0.0932  25.2257 0.0527 30.1778
airplane 0.0791  24.7128 0.0766 24.9917 0.0907 23.5241 0.0724 254778 0.0971 229319 0.0587 27.3035
sailboat 0.1405 222013 0.1327 22.6974 0.1466  21.8321 0.1181 23.7101  0.1769  20.2003  0.1015  25.0255
facade 0.0702  28.8191 0.0680 29.0957 0.0789 27.8043 0.0770 28.0208 0.1058 25.2561  0.0610  30.0392
baboon 0.1673  20.8879  0.1500 21.8360 0.1850 20.0144 0.1522 21.7119 0.1982 19.4158 0.1414  22.3489

Table V: RRSE and PSNR of image completion at SR = 20% and SNR = 10dB.

Color Image CTNM HaLRTC W-Tucker BCPF BTC BFCTC-W
RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR RRSE PSNR
peppers 02159 19.2316 0.2101  19.4682 0.3604 14.7810 0.1393  23.0369 0.2183  19.1356  0.1290  23.7056
lena 0.1700  20.5116  0.1584  21.1255 0.2649 16.6590  0.1043  24.7548 0.2263  18.0269  0.1009  25.0395
barbara 0.1928  20.7029 0.1863  21.0008 0.2755 17.6026  0.1306 24.0854 0.1984 20.4542  0.1202 24.8060
house 0.1426  21.5316  0.1307 22.2885 0.1989 18.6413 0.0970 24.8778 0.1576 20.6629  0.0812 26.4216
airplane 0.1243  20.7869  0.1132  21.5994 0.1599 185993  0.0847 24.1183 0.1579 18.7086  0.0809  24.5126
sailboat 0.2305 179014 0.1966  19.2832  0.3244 149332 0.1460 21.8651 0.2199 18.3103  0.1420  22.1065
facade 0.1239  23.8844 0.1025 255314 0.1627 21.5181 0.1037 254319 0.1062 25.2234  0.0871  26.9437
baboon 0.2319  18.0518 0.1915 19.7145 03131 154442 0.1676  20.8737 0.2070  19.0384  0.1627  21.1320

B. Image data

Next we show the results of 8 RGB benchmark images
each with size 256x256x3. For the denoising task, we set
SNR = 5dB. For the completion task, we set SNR = 20dB,
SR = 30% and SNR = 10dB, SR = 20%. As the image
data contain smoothness among neighboring pixels, we choose
¥, = ¥y, = U3 = FTF, where F is defined in (10). The
results are shown in Table III for denoising and Tables IV,
V for completion. For HOOI and W-Tucker, the multilinear
rank is set at (40, 40, 3) [50]. For CTNM, the upper bound of
the multilinear rank is set as (40,40, 3) [51], while HaLRTC
does not make use of the multilinear rank information. For this
experiment, we also compare the result to BCPF [2], which
is the Bayesian CPD and can be considered as a restricted
form of Bayesian Tucker, and the CPD rank is learnt from the
algorithm.

It can be seen from Tables III, IV and V that the proposed
BFCTC-W method achieves the best RRSE and PSNR in all
tested images, due to the more flexible Tucker core in the
proposed model. To examine the visual differences, Figure
2 shows two examples (Lena and House) of the de-noised
images and Figure 3 shows two examples (Sailboat and
Peppers) of the completed images (SNR = 20dB, SR = 30%)
from various algorithms (locally enlarged details are shown
in the second and forth rows of the figures). It can be seen
that the proposed BFCTC-W recovers the best images, which
loses less image details than BTC, BCPF, ADR-Tucker and

HaLRTC, and removes more noise than HOOI, CTNM and
W-Tucker, achieving a better balance between noise removal
and recovering image details.

C. MRI data

Finally, we evaluate BFCTC-W method on recovering MRI
dataset "T1 ICBM normal Imm pnO rf0” [27] with size
181x217x 181, and with 1.i.d. Gaussian noise added to the full
data at SNR = 5dB and to the incomplete data (SR = 30%)
at SNR = 20dB. As the MRI data contain smoothness among
neighboring pixels, we also choose ¥y = ¥, = U3 = FT'F,
where F is defined in (10). Since the dimensions and rank of
MRI data are generally high, it is commonly believed that [27]
the data as a whole does not has a globally low-rank struc-
ture. However, low-rank structure may exist in smaller block.
Hence, we follow [27] and apply Tucker decompositions to
non-overlapping blocks of data independently.

Table VI and Table VII show the denoising and completion
performance of various algorithms for five blocks of the MRI
data, each of size 181 x 217 x 5. For the HOOI algorithm, we
consider two ways to set its multilinear rank. The first one is
by carefully tunning it to give the smallest RRSE, and it was
found that the most suitable rank for HOOI is (30,30,2). The
second one is by using the multilinear rank from the proposed
BFCTC-W. And the upper bound of multilinear rank of CTNM
and the input multilinear rank of W-Tucker are set in the same
way as that in image data in the last section.



BFCTC-W
(proposed)

original im-
age

noisy image BTC

BCPF ARD-Tucker HOOI

>

“house’

detailed

>

“house’

»lena”

detailed

»lena”

Figure 2: Examples of the de-noised images at SNR = 5dB.

It can be seen that the proposed BFCTC-W performs
the best in terms of RRSE due to its more flexible core
compared to other Bayesian algorithms. Furthermore, due to
the advantages of explicit modeling of noise, the proposed
algorithm also outperforms optimization-based methods. Fig-
ure 4 shows two examples (blockl and block5) of the MRI
completion results from different algorithms (locally enlarged
details are shown in the second and forth rows of the figures).
It can be seen that the proposed BFCTC-W recovers the best
images, which loses less image details and removes more noise
compared to other algorithms.

VI. CONCLUSION

We have proposed a Bayesian Flexible Core Tucker tensor
completion model by revealing that Tucker decomposition
is equivalent to a CPD with factor matrices having large
number of columns while being low-rank. With the low-rank
structure in the factor matrices being modeled by the Gaussian-
inverse Wishart prior, an inference algorithm with closed-
form update has further been derived under the variational
Bayesian framework. Extensive experiments on synthetic data
have showed that the proposed model achieves more accu-
rate multilinear rank estimation, and higher tensor recovery
accuracies compared to previous Bayesian Tucker models
when the elements of the core tensor are having diverse
variances. Further experiments on color images and MRI data
validated the superiority of the proposed method in practical
applications.
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APPENDIX A
DERIVATION OF THE ALGORITHM

Derivation for Q(B (Ilc))

Gathering the terms in (11) that are related to B:(f), it can
be expressed as

p(©,Yq)

1 T
ocexp{ -5(BY (6" + =) BY
k)T (k)

+w"BY + BY wf

T
)} (20)
n 20),&*) = a-diag (O Oy (B + BY})) € BRI,
where Oy, is the mode-k unfolding of the 3-order tensor
O. and Q. (B « BY)) = (BY « B) 0 - ©
(B By ™o B« B )00 (B« BY).

Furthermore, wl(k) is a 1 x Iy vector and is defined by



i . h h BI\T
wl( ) — Oé{ Zp;ﬁl dlag(o(k)Ohik(B(J) * B(’p))B(’p) ) _

m\1" -
[(Y'(k) * Oy (@h#B ¢ )} }, where Y, is the mode-
k unfolding of the 3-order tensor Y, and (O, ;ékB:(,};) =
3 k+1 k—1 1
BYo...oB%VeB% Vo ...0B).
Puttmg (20) 1nt0 (13) glves

1 T
Q (B:(j;)) x —3 exp {B:(’];) EQ\B<k) [ﬁl(k) + Ek} B:(Ilc)
e 18 e ]
T

A (~Borm [ I
=m®

(Egypt [ +zk})‘1). 1)

O
=7

So for each column of B, the variational distribution is
Gaussian. Putting the definition of £(k) and wl(k) into Tl(k)
BM B®),
is a scalar, the covariance and mean of Q(B:(f)) are given by
(note that while not explicitly stated, all the expectations are
with respect to the variational distributions of @\B(ll€ )

and m( ), and recognizing that B:(}ll’) B;(’};,) =

T E [

+ E [a] diag (0(k)®h¢kE [B:(’};) - B:(’?)D )

ml(k) = —Tl(k)ilE [a] {
3 diag (o(k)@h#]}z B« BW] . E [Bff;ﬂ )

" [oroer (@l

h#k

(22)

where OE [B(h)}
h#k

E B:(,’Z 1)} ®---0OF {BS)} and (O, 4, E {B:(,}ll) * B;(,}ll)} -
E B:(,?) . Bg)} ® © E[BYV« Bi’?“)} ®
E B:(,I;:—l) N B:(,lz?*l)} ®---0OF [BS) * B(})}

In order to compute (22), we need the mean of various

- E[BY| o 0E[B}] 0

columns of B, which are simply given by E [B;(,’,';)} =

(h) . For E [B( ) & B(h)}, it is recognized that this is the
expectation of elementwise product of B(h) and B(h) This
gives E [B:(J) B;(,}IL,)} = ml( * m,(,h), if [ # p. Furthermore,
E[BD«B®] = m® « m® 4 diag(r(™ ), where
diag(.) takes the diagonal of the matrix and put it as a vector.

Putting these results into (22), we obtain (15).
Derivation for Q(Xg):

Gathering the terms in (11) that are related to X, (11) can
be expressed as

L 1< T
k k
p(©,Ya) x exp {2 In|3y| — 3 ;B:(,l) EkB:,l)

vk—Ik—l 1 —
5 In [3| - 5T (\Ifklzk)}
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_ exp{wmgﬂ
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Putting (23) into (13) gives

L—1 -1
Q(gk)ocexp{w
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~1
x Wishart(vk + L, (\y;l +Eeo\s, {B(k)B(k)TD >
——

=g

1H|2k‘

=0,
(24)

Thus, the variational distribution Q(Xj) is the Wishart
distribution

Q(X4) o< Wishart(y,, ¥y,), (25)
where 9, and ¥}, are updated by
U = v + L
¥, = (\Izgl +Eo\x, [B(’“)B(k)Tbi (26)

For the expectation E@\gk [B(’“)B(k)T] , it is obtained from

Q(B:(,’f)) and can be shown to be equal to M (F) (M(k))T
-1

ZZL:1 ) , with M(F) = [m( mgk), . ,m(Lk)]

Derivation for Q(a):

Gathering the terms in (11) that are related to «, it can be
expressed as

L 2
_9 (2 (3)
wen{ =5 lox (v-3 (8 0B 0 BY))
1=1 r
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27)
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Putting (27) into (13) gives
Q (a) o< exp { (]Ee\a [¢] — 1) Ino— Eg\, [d] a}



x Gamma( Eo\q H Eeo\a [d’} ) . (28)
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From (28), we obtain that the variational distribution Q(«) is
Gamma distribution with parameters updated by

Zilizis Oi1i2i3
2 b)
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2
; 1
d=d+ ;Eea Ho*

F
(29)

In (29), the expectation of model residuals can be computed
using the definition of CPD (the expectation is with respect
to ®\«, but this dependence is not explicitly stated in the
expressions below to simplify the notations):

]EUIO (v é (B\) o BY o BY)) Hi]
—E|T{((BV(BY & BY)T -
. (O(l)T *

= r{ (¥ * O))(Oqr) * Yo" }
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L L

L2 e[ 2] 00 Qs

1=1 p=1 h#1

% B(h)} }

(32)

Finally, with the expression of E B:(f[) * B;(f;;)] derived below
(22), (32) is identical to (19).

APPENDIX B
. EFFICIENT ALGORITHM UNDER FULLY OBSERVED TENSOR
. k
Expression for () (B:E . ) ):

Notice that the square matrix
diag (O OB [BY «BY]) in @ is a
diagonal matrix and the " diagonal element is
0w OB [BY +BY]. i = 15 I this

expression, since the dependence of ¢ only appears in O,
if all the elements of O are one, the diagonal elements do
not depend on ¢, and they all are the same and is given by
T
Hh;ﬁkE[B:(,?) B:(}[)} = Hh;ﬁkE[B() B(h)} L Further-
more, for the vector O(k)Qh;ék LB(h) >I<B(h)] c RIxx1
in (22), when the elements of are all one, all the
elements of thls vector are the same and is given by

_ QTI-{(}f(l) % 0(1))( (E {B(g)} OF |:B(2):|) E [B(l)}T ) }(22) could be simplified as

+ ﬂ{]E[ ((B<1> (B® B<2>)T) X 0<1))

(0w (B9 0 B®)BYT)) ]},

(30)

where the last euqation is due to the conditional independence
of B) in variational distribution. Expressing B(*) in terms
of its columns, we can further show that (30) is given by
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In order to compute (33), we already have E [B;(J,)} =

g,h). Similarly, we also need the elements of the matrix:

m
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results into (33), we obtain
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Expression for Q(«):
Under fully observed Y, i.e., {O;,,i, = 1311215

11=1,i2=1,i3=1"
the expression Zil inis Oi,igis in (29) equals Iy I213. Further-

T
more, the scalar E B:(;) * B(ﬂ 0(1)@h¢1]E[B:(77) «BY)]
in (32) with elements of O(;) being all one could be sim-

plified as HizlE[B(h)TB(h)]lp. Therefore, (29) could be
simplified as ’
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(36), we obtain
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This gives the ¢ and d in fully observed tensor case as
d=d+ %Tr{Y(l)(Y(l)) b= mefv) (M o M®@)
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(38)

Summary and Complexity analysis

Tr(T(Lk)fl))} }le1~

Under fully observed ), the Algorithm 1 is modified by
replacing (15) with (34), and (19) with (38). In this case, the
computational complexity of the factor matrices {B(k)} T
the hyperparameters { >k }k 1> and the noise precmon « are

(Zk 1Ik +Hk 1Ik) (Zk 1 Lk ) and O(Hk 1I’€)

respectively. Thus the overall computational complexity is

o( 22:1 I+ Hi:l Ir).
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