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Introduction: motivation of debris sensing

Low earth orbit (LEO) satellite constellations, like StarLink and
OneWeb, are key enablers in the space-aided next-generation
communication systems [1, 2]. Debris is threatening for the security
and robustness of the constellation systems. Detecting debris and
estimating its trajectory is central to avoiding and creating additional
debris

One tricky issue is a large number of tiny debris from collisions,
e.g., the hyper-velocity LEO collision events (Iridium 33 and Cosmos
2251) resulted in thousands of untrackable objects less than 10 cm
in diameter [3].

They are too small to be detected using ground-based radars (GBRs)
and optical measurements, where the typical 500− 1000 km detection
distance of LEO debris. Hence, space-based measurements are
needed for detecting small debris.
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Introduction: the twofold sensing system

A stand-alone debris detection system is costly and unrealistic:

the large quantity of debris;

the debris around the satellite orbits is more threatening.

We consider debris detection to be a twofold system:

i) The existing LEO constellations additionally conduct bistatic
opportunistic sensing without extra resources of the inter-satellite
links (ISL), and it serves as preliminary localization.

ii) Specific threatening debris will be further refined using monostatic
setups.

This paper introduces the first step, i.e., the intersatellite links (ISL) based
opportunistic sensing.
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System model: the architecture of sensing system

A typical hardware architecture of the integrated sensing and
communication (ISAC) satellite system is in Fig. 1.

ISLs are established between
satellites. Without other
scatterers in space, the NLoS
path offers information about
the debris.

Any satellite can be Tx/ Rx
based on the protocol, the
identified Rx receives signals
from the adjacent Tx satellites
and acts as the data fusion
center.

Tx1

Rx

Debris

Tx2

Debris

Figure: An ISAC satellite system: M Tx
satellites, one Rx satellite, and L ≥ 1
debris clusters.

Clustering paths are similar in the amplitude, range, and angular
domains of channel impulse response (CIR).
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System model: signal model

Let lK ≥ 1 denote the number of paths for the lth cluster (l ∈ [1, L])
and hlc denote the path corresponding to the centroid of the lth
cluster, the channel of the lkth (lk ∈ [1, lK ]) debris as

hl ,lk (t) = hlc (t)∆hl ,lk = hlc (t)(1 + ∆αlk )e
j∆φlk , (1)

where ∆αlk and ∆φlk follow N(0, σ2
1) and N(0, σ2

2).

The baseband equivalent signal model of hlc (p) is

hlc (p) =αlc e
−j2πfspτlc︸ ︷︷ ︸
range

e
j2π

fc
fs

v txlc + vlc
c

p︸ ︷︷ ︸
Range−Doppler−coupling

, (2)

The NLoS ISL is the superposition of individual components as

hNLoS(p) =
L∑

l=1

lK∑
lk=1

hl ,lk (p) + z(p) =
L∑

l=1

hl(p) + z(p), (3)

where z(p) follows N(0, σ2
0).
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System model: signal model

The second exponential term in (2) e
j2π

fc
fs

v txlc + vlc
c

p

shows the
range-Doppler coupling:

i) Since the constellation and debris are moving fast, the range-Doppler
coupling effect can impact the accuracy of distance estimation [4, 5],
where most of the radar scenarios are ignored.

ii) One example in the simulation part shows that the relative velocity of
debris is 5 km/s and the error in delay estimation is about 2.6 km.

iii) In the preliminary localization, we pursue the estimation of
approximate delay. Additional addresses can be done using waveform
design and multiple frames of data in the twofold system.
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Methodology: parameter estimation of the NLoS ISLs 1/5

We convert the debris sensing to parameter estimation of the
non-line-of-sight (NLoS) ISLs.

There are various high-resolution channel parameter estimation
algorithms, where the iterative expectation maximization (EM) using
MLE is popular.

The space alternative generation EM (SAGE) is an acceleration
structure of EM [6, 7], where parameter subsets are alternatively
estimated in each iteration until convergence.

In this paper, we model the spatial dense-distributed debris to be
clustered and propose a nested expectation (E)-based SAGE (SAGE2)
algorithm for the cluster-based channel model, where parameters of
the centric path in each cluster are estimated, and other multipaths
are statistically represented, hence estimating fewer paths and
reducing the iterations.
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Methodology: parameter estimation of the NLoS ISLs 2/5

Let hNLoS = [hNLoS(1), hNLoS(2), . . . , hNLoS(P)]
T . The received signal

consists of the multipaths from L clusters, following the concept of
EM, this incomplete data hNLoS ∈ CP×1 can be decomposed into L
complete data hl ∈ CP×1 as

hNLoS =
L∑

l=1

hl =
L∑

l=1

(

lK∑
lk=1

hl ,lk + βlz) =
L∑

l=1

(

lK∑
lk=1

hlc ⊙∆hl ,lk + βlz),

(4)∑L
l=1 βl = 1 to satisfy the conservation of noise variance between

complete data and incomplete data.

The SAGE works when the incomplete data is independent and
resolvable. However, the paths within the cluster are correlated and
are not necessarily resolvable.
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Methodology: parameter estimation of the NLoS ISLs 3/5

hl =

lK∑
lk=1

hlc ⊙∆hl ,lk + βlz = lKhlc ⊙

[
1

lK

L∑
l=1

∆hl ,lk

]
hl ≈ lKhlc ⊙ E [∆hl ,lk ] + βlz,

(5)

where the sum is replaced by the expectation E(·), under the
assumption of a large number of paths within a cluster.

E [∆hl ,lk ] = E[e j∆φlk︸ ︷︷ ︸
f (∆φlk

)

+∆αlk e
j∆φlk︸ ︷︷ ︸

g(∆φlk
)

] = E [f (∆φlk )] + E [g(∆φlk )] ,

(6)

where Ef (∆φlk
) = e

−
1

2
σ2
2
; ∆αlk and ∆φlk are independent and follow

the normal distribution, Eg(∆φlk
) = E∆αlk

E
e
j∆φlk

= 0.
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Methodology: parameter estimation of the NLoS ISLs 4/5

hlc ≈ αlca(τlc ), (7)

with a(τl) ∈ CP×1 = [e−j2πfs1τlc e−j2πfs2τlc · · · e−j2πfsPτlc ]T .

Substituting (7) and (6) into (5), we can characterize the channel of
the lth cluster as

hl = l ′k lKαlca(τlc ) + βlz = l ′k h̃l + βlz, (8)

where l ′k = e
−
1

2
σ2
2
and h̃l = lKαlca(τlc ), the parameters to be

estimated are θl = [τlc , αlc , lK ].
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Methodology: parameter estimation of the NLoS ISLs 5/5

While the MLE of θl for the complete data is argmax
θl

{hl(θl)}, the
quantity hl is not observable. However, the conditional expectation
E[hl(θl)|HNLoS(θ̂l), θ̂l ], has the same dependence on θl as the
original MLE function, hence it is used to estimate ĥl .

E-step: With an initialization θ
(0)
l and following [8], closed-form

expression of E[hl(θl)|HNLoS(θ̂l),θl ] is,

ĥ
(i)
l = l ′k h̃l(θ

(i−1)
l ) + βl

(
hNLoS −

L∑
l=1

l ′k h̃l(θ
(i−1)
l )

)
. (9)

M-step: Obtaining the parameters as

θ
(i)
l =argmin

θl

(
ĥ
(i)
l − l ′k h̃l(θl)

)(
ĥ
(i)
l − l ′k h̃l(θl)

)H
βlσ

2
0

(10)
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Methodology: simulation and discussion 1/2
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Figure: Simulation scenario: 1
Rx (data fusion center) and 3
adjacent Txs to sense debris in a
region of 1000× 1000 km2, with
two debris clusters are
considered.

Table: Simulation configurations

Configurations Values

Simu range [km2] 10002

fc [GHz] 14 GHz
fs [MHz] 1
P 7001
EIRP [dBW] 34
Gr [dB] 30
SNR [dB] 40
Tx velocity [0,−3]] km/s
Debris velocity [5, 0] km/s
NO. of debris 25/ 15
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Methodology: simulation and discussion 2/2

Cluster 1 Cluster 2

Figure: Cluster-based CIRs:
the estimated paths of
cluster centroid using the
proposed SAGE2 are
denoted as red stars, and
estimated paths using
conventional SAGE are
denoted as yellow dots.
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Figure: Positioning result of
the cluster center, where the
cluster centroid is estimated
directly, while the
conventional SAGE
algorithm requires further
clustering algorithms for
scatterer localization.
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Conventional SAGE, pre-set paths = 5

Conventional SAGE, pre-set paths = 15

Conventional SAGE, pre-set paths = 35

proposed SAGE
2
, pre-set clusters = 5

proposed SAGE
2
, pre-set clusters = 2

Figure: Comparison of
iteration times: the incorrect
number of paths in SAGE
will lead to local optima, in
the proposed SAGE2, the
prior information on the
number of clusters is much
easier to obtain and
converges fast.
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Conclusion

This work proposes an opportunistic debris-sensing approach based on
channel parameter estimation using the ISLs in LEO constellations.

In this approach, the debris is modeled as clusters and the proposed
SAGE2 method is used to estimate the parameters of the cluster-based
channel and localize the centroid of the debris cluster based on the
estimated delay information among different Tx-debris-Rx links.

The SAGE2 is tested using a stochastic channel model with multiple
clusters, as well as the convergence comparison with the conventional
SAGE algorithm.

The results show that the proposed approach works well in debris
center localization with fewer iterations for convergence.

Dedicated mechanisms can further use the output of the proposed
method for further identification and accurate tracking of threatening
debris.
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Conclusion

Thanks for listening!
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