

Estimating exercise-induced fatigue from thermal facial images

UNIVERSITY **OF OULU**

ICASSP 2024

OF OULU Manuel Lage Cañellas¹, Constantino Álvarez Casado¹, Le Nguyen¹, Miguel Bordallo López^{1, 2} ¹Center for Machine Vision Research and Signal Analysis (CMVS), ²VTT Technical Research Centre of Finland Ltd.

BACKGROUND

- Historical Challenges: Traditional methods of exerciseinduced fatigue assessment faced problems such as invasiveness, subjectiveness [1] and practical limitations.
- Technological Solution: Computer vision techniques employing cameras can analyze facial expressions and fatigue levels during exercise, overcoming the limitations previously encountered.

MOTIVATION

- **Thermal Imaging Potential:** Thermal imaging provides an intriguing alternative, capable of measuring muscle activity and heat exchange patterns. Exercise elevates body temperature, emitting thermal radiation, which can be captured by thermal cameras in a non-contact manner.
- **Deep Learning Exploration:** Can Deep Learning models, leveraging thermal images, accurately estimate exercise-

induced fatigue?

METHODOLOGY

Thermal camera and setup

- Users recorded with Therm-App camera:
- VLWIR, 17 µm thermal detector, 19mm lens
- Manual focus with 288x384 pixels at 8.7Hz

Thermal database

Participants:

80 individuals recorded five minutes during two exercises.

Resting Exercise: Seat until **Heart Rate** < 80 bpm and **Respiratory Rate** < 12 rpm.

Fatigue Exercise: Climb stairs until **Heart Rate** >120 bpm and **Respiratory Rate** > 15 rpm.

Assigning ground truth to subjects

- **Rested Users:** Fatigue Level: 0
- **Fatigued Users:** Fatigue Level: Linear decay from 100 to 0 based on phosphocreatine [2] level recuperation after five minutes.

Training

- **Architecture:** ResNet with two new fully connected layers (FC).
- **Preprocessing**: Resize and random horizontal flip.
- **Enhancements:** Two additional regression layers.

RESULTS

MAE per user, four fatigue study cases

- **Correlation Confirmation:** User results confirm a clear correlation between predicted fatigue levels and the actual experienced fatigue.
- Extended Recovery Time: Users took longer to reach a resting level, indicating prolonged post-exercise recovery periods for some individuals.
- **Initial Fatigue Variation:** Findings suggest variations in initial fatigue levels among users, possibly impacting the speed of recovery.
- **Fast Recovery:** Noteworthy, some individuals exhibited fast recovery times, indicating their ability to

MAE stratified by gender and glasses

	Group	Combined	Fatigue	Resting
	Men + Women	13.64	22.20	5.40
	Men	13.46	23.72	3.59
	Women	13.96	19.52	8.60
No Glasses	Men + Women	14.01	21.44	6.57
	Men	13.77	21.97	5.57
	Women	14.32	20.74	7.91
Glasses	Men + Women	13.03	23.52	3.56
	Men	13.06	26.07	1.18
	Women	12.96	15.88	10.40

recover from fatigue more quickly than others.

•Static Thermal Imaging: Our study utilizes over 400,000 static thermal facial images to predict exercise-induced fatigue levels in users.

•Strong Correlation: Results indicate a robust correlation between predicted values and rate of fatigue decay, demonstrating the effectiveness of thermal imaging for fatigue assessment.

•Labeling Challenges: Variations in fatigue decay ratios among users suggest the need for improved labeling methods, possibly integrating biosignals like heart rate and respiration rate.

•Future Directions: Future research should explore the synergy of diverse data sources, including biosignals, to enhance the precision and reliability of fatigue assessment techniques.

[1] Lamb, Kevin L., Roger G. Eston, and David Corns. "Reliability of ratings of perceived exertion during progressive treadmill exercise." British journal of sports medicine 33.5 (1999): 336-339. [2] Kent Sahlin, Michail Tonkonogi, and Karin Söderlund, "Energy supply and muscle fatigue in humans," Acta Physiologica Scandinavica, vol. 162, no. 3, pp. 261-266, 1998.