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CONCLUSION

•Static Thermal Imaging: Our study utilizes over 400,000 static thermal facial images to predict exercise-induced fatigue levels in users.

•Strong Correlation: Results indicate a robust correlation between predicted values and rate of fatigue decay, demonstrating the effectiveness of thermal imaging for fatigue assessment.

•Labeling Challenges: Variations in fatigue decay ratios among users suggest the need for improved labeling methods, possibly integrating biosignals like heart rate and respiration rate.

•Future Directions: Future research should explore the synergy of diverse data sources, including biosignals, to enhance the precision and reliability of fatigue assessment techniques.
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• Historical Challenges: Traditional methods of exercise-
induced fatigue assessment faced problems such as 
invasiveness, subjectiveness [1] and practical limitations.

Group Combined Fatigue Resting

Men + Women 13.64 22.20 5.40

Men 13.46 23.72 3.59

Women 13.96 19.52 8.60

No Glasses

Men + Women 14.01 21.44 6.57

Men 13.77 21.97 5.57

Women 14.32 20.74 7.91

Glasses

Men + Women 13.03 23.52 3.56

Men 13.06 26.07 1.18

Women 12.96 15.88 10.40

• Participants:
80 individuals recorded five minutes during two exercises.

• Users recorded with Therm-App camera:

• VLWIR, 17 μm thermal detector, 19mm lens

• Manual focus with 288x384 pixels at 8.7Hz

Thermal database

Assigning ground truth to subjects
• Rested Users: Fatigue Level: 0

• Fatigued Users: Fatigue Level: Linear decay from 100 to 0 based 

on phosphocreatine [2] level recuperation after five minutes.

Training

• Architecture: ResNet with two new fully connected layers (FC).

• Preprocessing: Resize and random horizontal flip.

• Enhancements: Two additional regression layers.

• Correlation Confirmation: User results confirm a clear 
correlation between predicted fatigue levels and the 
actual experienced fatigue.

• Initial Fatigue Variation: Findings suggest variations in 
initial fatigue levels among users, possibly impacting 
the speed of recovery.

• Extended Recovery Time: Users took longer to reach a 
resting level, indicating prolonged post-exercise 
recovery periods for some individuals.

• Fast Recovery: Noteworthy, some individuals 
exhibited fast recovery times, indicating their ability to 
recover from fatigue more quickly than others.

• Thermal Imaging Potential: Thermal imaging provides an 
intriguing alternative, capable of measuring muscle activity 
and heat exchange patterns. Exercise elevates body 
temperature, emitting thermal radiation, which can be 
captured by thermal cameras in a non-contact manner.

• Deep Learning Exploration: Can Deep Learning models, 
leveraging thermal images, accurately estimate exercise-
induced fatigue?
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• Technological Solution: Computer vision techniques 
employing cameras can analyze facial expressions and 
fatigue levels during exercise, overcoming the limitations 
previously encountered.

METHODOLOGY

• Resting Exercise: Seat until
Heart Rate < 80 bpm and Respiratory Rate < 12 rpm.

• Fatigue Exercise: Climb stairs until
Heart Rate >120 bpm and Respiratory Rate > 15 rpm.
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