

CROSS-LINGUAL LEARNING IN MULTILINGUAL SCENE TEXT RECOGNITION

Yusuke Matsui Jeonghun Baek

Kiyoharu Aizawa

The University of Tokyo

Task: Multilingual Scene Text Recognition (Multilingual STR)

(a) Monolingual training on a low-resource language Korean (KOR) results in incorrect predictions.

(b) Cross-Lingual Learning (CLL) from a high-resource language English (ENG) to KOR leads to correct predictions.

Preliminaries: (1) Multilingual STR: A task to recognize text from multiple languages in a word- or line-level scene image. (2) Cross-Lingual Learning (CLL): A methodology for transferring knowledge from one language to another. What we did:

1. Verified two general insights about CLL and showed that the two general insights may not be applied to multilingual STR.

- 2. Showed that CLL is simple and highly effective for improving performance in low-resource languages.
- 3. Found the condition where CLL works well: the crucial condition for CLL is the dataset size of high-resource languages,

regardless of the kind of high-resource languages.

Two General Insights from Previous Works

According to MRN [1], joint learning on high- and low-resource languages may make the model biased toward high-resource languages. Therefore, it may result in poor performance in lowresource languages.

According to M-BERT [2], CLL works best between similar languages.

HIN

 \rightarrow We investigate CLL performance between similar languages in linguistic typology and appearance.

Training on

BEN

Fine-tuning on

CL between similar lang.

Experimental Settings and Results

They are simple and basic methods for CLL.

We investigate the effect of CLL via joint and cascade learning. Dataset statistics: we use MLT19[3] and SynthMLT[4] datasets.

- Joint learning is to train a model using multiple datasets from multiple languages simultaneously.
- **Cascade learning** is to train a model in one language and then fine-tune the model in another language.

For the cascade learning part, please see our paper.

Count type	CHI	BEN	HIN	JPN	ARA	KOR	LAT
Training	1.9K	2.6K	2.7K	3.1K	3.5K	4.0K	28K
Validation	204	341	320	337	408	455	3.4K
Evaluation	248	311	349	366	421	525	3.3K
Charset	1.6K	608	696	1.3K	141	878	85

SynthMLT 33K 165K 54K 37K 202K 147K 211K

	Model: CRNN (TPAMI'17) [1]									Model: SVTR (IJCAI'22) [7]								
Training data	CHI	BEN	HIN	JPN	ARA	KOR	LAT	Avg.	CHI	BEN	HIN	JPN	ARA	KOR	LAT	Avg.		
Each lang. (<i>Mono</i> .) All lang. (<i>All</i> , 46K)	3.2	33.4	24.2	14.3	27.1	4.3	85.7	27.4	2.1	19.1	22.8	10.9	23.6	5.7	85.0	24.2		
All lang. (All, 46K)	41.3	69.3	66.9	44.8	54.7	61.4	85.4	60.5	35.2	67.8	68.5	42.9	53.7	53.0	84.7	58.0		
All but LAT (18K)	8.3	32.6	31.6	17.8	36.9	12.2	—	—	4.1	19.5	22.9	12.5	26.5	10.1	—	—		

Results of joint learning: Simple joint learning drastically

improves performance in low-resource languages!

	Model: CRNN (TPAMI'17) [1]								Model: SVTR (IJCAI'22) [7]							
Training data	CHI	BEN	HIN	JPN	ARA	KOR	LAT	Avg.	CHI	BEN	HIN	JPN	ARA	KOR	LAT	Avg.
<i>Base</i> (20K)	9.7	35.1	31.8	19.5	40.2	15.9	20.9	24.7	6.0	23.0	25.0	14.5	29.3	11.8	20.2	18.5
+ 2K S-CHI (22K)	20.1	51.8	49.7	28.0	42.8	35.5	42.2	38.6	6.5	19.3	25.6	14.3	27.1	11.2	18.9	17.6
+ 33K S-CHI (53K)	54.8	69.0	68.6	39.2	59.7	52.3	59.4	57.6	56.6	62.3	63.3	41.5	50.1	49.2	57.2	54.3

Qualitative analysis: LAT is a high-resource language (28K).

The results below show the effectiveness of CLL.

Input images	Joint learning on all but LAT	Joint learning on all	Ground Truth
الياپ	الحم	الباب	الباب
রাখিবেন	বান	রাখিবেন	রাখিবেন
北京西	か本	北京西	北京西
HSU	ज	मंडप	ਸੰਤਧ
くすり	رما ٥	くすり	くすり
내면은	상온	냉면은	냉면은
CUISINE	디센다	CUISINE	CUISINE

+ 2K S-BEN (22K)	10.3	40.9	37.6	19.0	40.2	15.9	23.0	26.7	6.5	23.4	27.6	14.3	27.4	13.8	20.4	19.1
+165K S-BEN (185K)	32.7	81.3	74.2	40.1	65.1	55.1	63.2	58.8	44.0	84.8	80.8	51.0	70.6	63.2	68.7	66.2
+ 2K S-HIN (22K)	17.7	55.1	52.3	28.7	41.7	36.0	42.5	39.2	5.8	22.3	26.3	13.9	28.1	11.1	19.2	18.1
+ 54K S-HIN (74K)	36.4	74.2	78.7	41.4	57.7	57.2	61.2	58.1	29.0	64.6	70.0	37.4	52.7	44.6	55.3	50.5
+ 2K S-JPN (22K)	19.4	55.9	53.9	30.5	41.8	39.2	43.5	40.6	6.0	20.9	25.2	14.6	27.3	12.7	19.0	18.0
+ 37K S-JPN (57K)	39.2	70.3	71.5	54.8	59.3	59.8	63.7	59.8	38.6	66.9	70.2	56.7	55.3	53.9	62.7	57.7
+ 2K S-ARA (22K)	13.5	46.4	43.9	26.4	41.9	31.6	39.4	34.7	6.4	19.9	25.8	14.3	28.8	13.1	19.4	18.2
+202K S-ARA (222K)	32.4	71.1	72.1	37.2	82.2	54.0	58.7	58.2	33.7	69.2	70.8	40.8	82.7	50.0	57.4	57.8
+ 2K S-KOR (22K)																
+147K S-KOR (167K)	40.9	75.2	73.6	45.7	65.2	80.4	64.3	63.6	50.7	81.0	78.4	53.5	73.6	82.5	69.6	69.9

Joint learning with additional data, SynthMLT [4]:

- The crucial factor for CLL is the number of samples in high**resource languages** rather than the similarity between languages.
- We assume this is because the essential knowledge of STR is distinguishing text in the image and can be learned from any language.

[1] Zheng et al., MRN: Multiplexed Routing Network for Incremental Multilingual Text Recognition, ICCV, 2023 [2] Pires et al., How Multilingual is Multilingual BERT?, ACL, 2019

[3] Nayef et al., ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and Recognition -- RRC-MLT-2019. ICDAR, 2019 [4] Bušta et al., E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text, ACCV, 2018