
DBS: DIFFERENTIABLE BUDGET-AWARE SEARCHING FOR CHANNEL PRUNING
Zhaokai Zhang⋆ , Tianpeng Feng⋆ , Yang Liu, Chunnan Sheng, Fanyi Wang, He Cai

OPPO Research Institute

Network pruning is an effective technique to reduce computation costs for deep model deployment on resource-
constraint devices. Searching superior sub-networks from a vast search space through NAS, which conducts a one-
shot supernet used as a performance estimator, is still time-consuming. In addition to searching ineffciency, such
solutions also focus on FLOPs budget and suffer from an inferior ranking consistency between supernet-inherited and
stand-alone performance.

Starting points (sub-networks with Similar Budget, e.g., FLOPs, Latency)

8 16 24 ...
8 16 24 ...
16 24 32 ...

16 24 32 ...

40 48 56 ...

40 48 56 ...

Search Space

Sub-network
Sampler

16
16
24

24

48

48

8
16
16

16

40

56

24
24
16

32

56

40

arch1 arch2 archN
deployment Latency

FLOPs

Supernet
Training

Evaluation
Err

Dataset

(Arch1: Err1 FLOPs1 Latency1)
(Arch2: Err2 FLOPs2 Latency2)

(ArchN: ErrN FLOPsN LatencyN)

Training for predictors

Performance
Predictor

Budget
Predictor

Embedding Features

Encoder

Decoder

Arch_i

Err_i Budget_i

Performance
Predictor

Budget
Predictor

Embedding Features

Encoder

Decoder

Err_i* Budget_i*

Forward
Backward

Differentiable search by Performance and Budget

Opt Embedding Features

Arch_i(from starting points) Optimized Arch

SPFS

Forward
Backward

MobileNet-V2 Resnet-18
Method FLOPs Top-1 △Top-1 Method FLOPs Top-1 △Top-1

Uniform 1.0x 300M 72.3 0 Uniform 1.0x 1.8G 70.1 0
MetaPruning 313M 72.7 0.4 DMCP 1.04G 69.2 -0.9
AutoSlim∗ 300M 74.2 1.9 Cafenet 1.2G 71.2 1.1

DMCP 300M 73.9 1.6 Cafenet 0.9G 70.8 0.7
DMCP∗ 300M 74.6 2.3 CHEX 1.04G 69.2 -0.9
DBS 299M 74.3 2 DBS 1.04G 71.4 1.3
DBS∗ 299M 75 2.7 Resnet-50

Uniform 0.75x 210M 70.3 0 Uniform 0.85x 3.0G 75.3 0
AMC 211M 70.8 0.5 MetaPruning 3.0G 76.2 0.9

MetaPruning 217M 71.2 0.9 AutoSlim 3.0G 76 0.7
AutoSlim∗ 211M 73 2.7 DMCP 2.8G 77 1.7

DMCP 211M 72.4 2.1 Cafenet 3.0G 77.4 2.1
DMCP∗ 211M 73.5 3.2 DBS 2.8G 78.2 2.9
Cafenet 217M 73.4 3.1 Uniform 0.75x 2.3G 74.6 0
CHEX 220M 72 1.7 MetaPruning 2.3G 75.4 0.8
DBS 212M 73.1 2.8 AutoSlim 2.0G 75.6 1
DBS∗ 212M 73.7 3.4 DMCP 2.2G 76.2 1.6

Uniform 0.5x 97M 65.4 0 Cafenet 2.0G 76.9 2.3
DMCP 97M 67 1.6 CHEX 2.0G 77.4 2.8

Cafenet 106M 68.7 3.3 DBS 2.2G 77.8 3.2
DBS 97M 68.2 2.8 Uniform 0.5x 1.1G 71.9 0

MetaPruning 87M 63.8 0 MetaPruning 1.1G 73.4 1.5
DMCP 87M 66.1 2.3 AutoSlim 1.1G 74 2.1
DBS 87M 66.6 2.8 DMCP 1.1G 74.4 2.5

Uniform 0.35x 59M 60.1 0 Cafenet 1.0G 75.3 3.4
DMCP 59M 62.7 1.6 CHEX 1.0G 76 4.1
DBS 59M 63 2.9 DBS 1.1G 76.5 4.6

MetaPruning 43M 58.3 0 Uniform 0.25x 278M 63.5 0
DMCP 43M 59.1 0.8 DMCP 278M 68.3 4.8
DBS 43M 60.5 2.2 DBS 278M 69 5.5

Table 1. Results of pruned models from MobileNet-V2, Resnet-18 and Resnet-50 under various FLOPs
settings. ∗ indicates the pruned model is trained by the slimmable method.

Backbone Method Latency FLOPs Top-1 △Top-1

Resnet-18

uniform 21.96ms 1.04G 68.4 0
DMCP 24.27ms 1.04G 69.2 0.8
DBS† 22.55ms 1.04G 69.5 1.1
DBS‡ 21.98ms 1.04G 69.5 1.1

Resnet-50

uniform 84.40ms 2.80G 76.5 0
DMCP 87.54ms 2.80G 77 0.5
DBS† 87.94ms 2.80G 77.2 0.7
DBS‡ 75.88ms 2.80G 77.3 0.8

uniform 67.66ms 2.20G 76.1 0
DMCP 69.98ms 2.20G 76.2 0.1
DBS† 67.45ms 2.20G 76.5 0.4
DBS‡ 64.46ms 2.21G 76.6 0.5

uniform 37.25ms 1.10G 73.7 0
DMCP 38.78ms 1.10G 74.4 0.7
DBS† 36.2ms 1.10G 74.8 1.1
DBS‡ 33.63ms 1.12G 74.8 1.1

uniform 12.25ms 278M 66.5 0
DMCP 12.75ms 278M 68.3 1.8
DBS† 11.33ms 278M 68.6 2.1
DBS‡ 11.14ms 284M 68.4 1.9

Table 2. Comparison of latency. † represents search results by FLOPs. ‡ means search results
by latency.

Fig. 2. Rank consistency visualization of
different strategies. a: Uniform sampling, b:
Sandwich rule, c: Strict path-wise fair rule, d:
Strict path-wise fair sandwich rule.

Motivation

Method

Backbone Search algorithm FLOPs Top-1 △Top-1

MBV2

random 300M 73.2 0

evolutionary 300M 73.8 0.6

our 300M 74.2 1

random 211M 72.5 0

evolutionary 211M 72.8 0.3

our 211M 73.1 0.6

random 97M 67.4 0

evolutionary 97M 67.9 0.5

our 97M 68.1 0.7

Table 3. Results of different search
algorithms.For fair comparisons, we perform
random and evolutionary searches at the
same cost. We conduct experiments under
three FLOPs settings, our method can always
fnd sub-networks with better performance

Experment results

Fig. 1. The pipeline of DBS. 1) Train and evaluate a supernet relying on starting points; 2) Train Transformer-based predictors, including performance predictor and budget predictor; 3) Freeze the
parameters of predictors and Perform a differentiable budget-aware search on embedding features; 4) Decode corresponding sub-networks from optimized features. SPFS: Strict Path-wise Fair
Sandwich rule

Starting points (sub-networks with Similar Budget, e.g., FLOPs, Latency)

8 16 24 ...
8 16 24 ...
16 24 32 ...

16 24 32 ...

40 48 56 ...

40 48 56 ...

Search Space

Sub-network
Sampler

16
16
24

24

48

48

8
16
16

16

40

56

24
24
16

32

56

40

arch1 arch2 archN
deployment Latency

FLOPs

Supernet
Training

Evaluation
Err

Dataset

(Arch1: Err1 FLOPs1 Latency1)
(Arch2: Err2 FLOPs2 Latency2)

(ArchN: ErrN FLOPsN LatencyN)

Training for predictors

Performance
Predictor

Budget
Predictor

Embedding Features

Encoder

Decoder

Arch_i

Err_i Budget_i

Performance
Predictor

Budget
Predictor

Embedding Features

Encoder

Decoder

Err_i* Budget_i*

Forward
Backward

Differentiable search by Performance and Budget

Opt Embedding Features

Arch_i(from starting points) Optimized Arch

SPFS

Forward
Backward

