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Motivation

Figure 1: CNN filters respond differently to tree leaf stimuli across spatial regions.
Detecting a leaf reliably predicts a tree’s presence.

Figure 2: Differing feature counts challenge classifier generalization. Training with few
leaves may lead to misclassification of images with thousands, as boundaries are
sensitive to observed features.
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Motivation (cont.)
Higher-order representations undergo a non-linearity such as Power
Normalization (PN): reduce/boost contributions from frequent/infrequent visual
stimuli in an image, respectively.
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(b) MaxExp
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Figure 3: The intuitive principle of the Eigenvalue Power Normalization (EPN).

Given a discrete eigenspectrum following a Beta distribution, the pushforward
distribution of MaxExp and HDP are very similar.

For small γ, Gamma is also similar to MaxExp and HDP.

Note that all three EPN functions whiten the spectrum (map the majority
of values to be ∼1) thus removing burstiness (acting as a spectral detector).

As EPN prevents burstiness, it replaces counting correlated features with
detecting them, thus being invariant to their spatial/temporal extent.
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HoT with EPN
EPN performs a spectrum transformation on X ∈ Rd1×d2...×dr :

(λ;U1, ...,Ur) = HOSVD(X ), (1)

λ̂ = g (λ), (2)

G(X ) = ((λ̂×1U1) ...)×rUr, (3)

Let Φ ≡ {ϕ1, ...,ϕN ∈ Rd} be feature vectors extracted from an instance to
classify, e.g., video sequences, images, text documents, etc.

EPN retrieves factors which quantify whether there is at least one datapoint
ϕn, n∈IN , projected into each subspace spanned by r-tuples of eigenvector
from matrices U1=U2= ...=Ur.

For brevity, assume order r=3, a super-symmetric tensor, and any 3-tuple
of eigenvectors u, v, and w from U .

Note that u⊥v,v⊥w and u⊥w due to orthogonality of eigenvectors for
super-symmetric tensors, e.g., Uλ‡V= [X :,:,1, ...,X :,:,d] ∈ Rd×d2

where λ‡

are eigenvalues of the unfolded tensor X .

If we have d unique eigenvectors, we can enumerate
(
d
r

)
r-tuples and thus

(
d
r

)
subspaces Rd×r⊂Rd×d.
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HoT with EPN (cont.)
Our super-symmetric tensor descriptor is:

X =
1

N

∑
n∈IN

↑⊗r ϕn, (4)

The ‘diagonalization’ of X by eigenvectors u, v, and w produces core tensor:

λu,v,w = X ×1u ×2v ×3w, (5)

λu,v,w is a coefficient from the core tensor λ. Combining Eq. (4) & (5) yields:

λu,v,w =
1

N

∑
n∈IN

↑⊗3 ϕn ×1u×2v×3w

=
1

N

∑
n∈IN

⟨ϕn,u⟩ ⟨ϕn,v⟩ ⟨ϕn,w⟩ . (6)

Let ϕn be ‘optimally’ projected into subspace spanned by u, v and w when
ψ′

n=⟨ϕn,u⟩ ⟨ϕn,v⟩ ⟨ϕn,w⟩ is maximized.
As our u, v, and w are orthogonal w.r.t. each other and ||ϕn||2=1, simple
Lagrange equation L=Πr

i=1e
T
iϕn+λ(||ϕn||22−1) yields maximum of

κ=(1/
√
r)r at ϕn=[(1/

√
r), ..., (1/

√
r)]T .

For each n∈IN , we store ψn=ψ
′
n/κ in a so-called event vector ψ.
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HoT with EPN (cont.)
Assume ψ∈{0, 1}N stores N outcomes of drawing from Bernoulli distribution
under the i.i.d. assumption: the probability p of an event (ψn=1) & 1−p for
(ψn=0) are estimated by an expected value, p=avgn ψn=λu,v,w/κ (0≤ψ≤1).
The probability of at least one positive event (ψn=1) projecting into the subspace
spanned by r-tuples in N trials is:

λ̂u,v,w=1−(1−p)N = 1−
(
1− λu,v,w

κ

)N

. (7)

Each of
(
d
r

)
subspaces spanned by r-tuples acts as a detector of projections into

this subspace. Eq. (7) is the spectral MaxExp pooling with κ normalization.
Considering the dot-product between EPN-norm. tensors G(X ) and G(Y):

⟨G(X ),G(Y)⟩
=

∑
u∈U(X )
v∈V(X )
w∈W (X )

∑
u′∈U(Y)
v′∈V(Y)
w′∈W (Y)

λ̂u,v,wλ̂
′
u′,v′,w′ ⟨u,u′⟩ ⟨v,v′⟩ ⟨w,w′⟩ .

(8)

Hence, all subspaces of X and Y spanned by r-tuples (e.g., r = 3 as above) are
compared against each other for alignment by the cosine distance.
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Backpropagating through HOSVD and/or SVD

Let M#=MMT =UλUT be an SPD matrix with simple eigenvalues, i.e.,
λii ̸=λjj ,∀i ̸=j. Then U coincides also with the eigenvector matrix of tensor X
for the given unfolding. To compute the derivative of U (we drop the index) w.r.t.
M (and thus X ), one has to follow the chain rule:

∂U

∂Mkl
=
∑
i,j

∂U

∂(MMT )ij
· ∂(MMT )ij

∂Mkl
,

where
∂uij
∂M#

=uij(λjjI−M#)†. (9)

For SVD, we simply have to backpropagate through the chain rule:

∂UλUT

∂Xm′n′
=2Sym

(
∂U

∂Xm′n′
λUT

)
+U

∂λ

∂Xm′n′
UT,

where Sym(X)=
1

2
(X+XT). (10)

Let X = UλUT be an SPD matrix with simple eigenvalues, i.e., λii ̸=λjj ,∀i ̸=j,
and U contain eigenvectors of matrix X, then one can apply ∂λii

∂X =uiu
T
i and

∂uij

∂X =uij(λjjI−X)†.
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Application to Action Recognition
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Figure 4: Our action recognition pipeline with the attention mechanism.

Our pipeline:

extract subsequences (invariance to action localization)

apply various sampling rates (invariance to action speed)

extract 400D features (I3D pretrained on Kinetics-400)

obtain intermediate matrices with feature vectors

use count sketching (sk) to reduce dimensionality & concatenate features

Attention mechanism:

The attention network w : Rd′ →R outputs an attention score

Φ
(i,j)
w =w

(
E
(
Φ(i,j)

))
·Φ(i,j), i∈{st1, st2, ...} & j∈{sr1, sr2, ..., }

form final feature matrix Φ(final)∈Rd×N , d=4d′, then passed via Eq. (4).

pass X via EPN to obtain G(X )∈Rd×d×d, one per instance to classify
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Results & Discussions
SO+ sp1 sp2 sp3 mean TO+ sp1 sp2 sp3 mean

(no EPN) 76.2 75.3 76.7 76.1 (no EPN) 75.4 74.0 75.0 74.8
HDP 81.4 78.8 80.1 80.1 HDP 81.8 79.6 81.3 80.9
MaxExp 81.7 79.1 80.1 80.3 MaxExp 82.3 79.9 81.2 81.1
MaxExp+IDT 86.1 85.2 85.8 85.7 MaxExp+IDT 87.4 86.7 87.5 87.2

ADL+I3D 81.5 Full-FT I3D 81.3 SCK(SO+) +IDT 85.1 SCK(TO+) +IDT 86.1

Table 1: (top) Our model vs. (bottom) SOTA on HMDB-51.

static dynamic mixed
mean mean

stat/dyn all
SO+MaxExp 92.52 82.03 89.44 87.3 88.0

SO+MaxExp+IDT 94.92 86.63 96.02 90.8 92.5
TO+MaxExp+IDT 95.36 86.90 97.04 91.1 93.1

T-ResNet 92.41 81.50 89.00 87.0 87.6
ADL I3D 95.10 88.30 - 91.7 -

Table 2: (top) Our pipeline vs. (bottom) SOTA on YUP++.

sp1 sp2 sp3 sp4 sp5 sp6 sp7 mAP
SO+MaxExp+IDT 75.7 82.5 79.4 75.1 75.7 76.8 75.9 77.3
TO+MaxExp+IDT 78.6 83.4 81.5 78.8 81.7 79.2 79.6 80.4

KRP-FS 70.0 KRP-FS+IDT 76.1 GRP 68.4 GRP+IDT 75.5

Table 3: (top) Our pipeline vs. (bottom) SOTA on MPII.

Thank you!
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