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Motivation
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Figure 1: CNN filters respond differently to tree leaf stimuli across spatial regions
Detecting a leaf reliably predicts a tree’s presence.
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Motivation (cont.)

Higher-order representations undergo a non-linearity such as Power
Normalization (PN): reduce/boost contributions from frequent/infrequent visual
stimuli in an image, respectively.
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Figure 3: The intuitive principle of the Eigenvalue Power Normalization (EPN).

@ Given a discrete eigenspectrum following a Beta distribution, the pushforward
distribution of MaxExp and HDP are very similar.
o For small v, Gamma is also similar to MaxExp and HDP.

o Note that all three EPN functions whiten the spectrum (map the majority
of values to be ~1) thus removing burstiness (acting as a spectral detector).

o As EPN prevents burstiness, it replaces counting correlated features with
detecting them, thus being invariant to their spatial/temporal extent.
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HoT with EPN

EPN performs a spectrum transformation on X € R *d2:.-xdr.
(A Uy,...,U,) = HOSVD(X), (1)
A=g(N), (2)
G(X) = (Ax1Uh)...) %, Uy, (3)

o Let ® = {¢1,..., o5 € R} be feature vectors extracted from an instance to
classify, e.g., video sequences, images, text documents, etc.

o EPN retrieves factors which quantify whether there is at least one datapoint
&n, nE€Ly, projected into each subspace spanned by r-tuples of eigenvector
from matrices U; =Us=...=U,..

o For brevity, assume order r=3, a super-symmetric tensor, and any 3-tuple
of eigenvectors u, v, and w from U.

o Note that u L v, v _Lw and u_l w due to orthogonality of eigenvectors for
super-symmetric tensors, e.g., UANV = [X..1,..X. . 4] € R4*4” where A
are eigenvalues of the unfolded tensor X .

o If we have d unique eigenvectors, we can enumerate (f) r-tuples and thus (f)
subspaces R4*" c R4x4,
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HoT with EPN (cont.)

Our super-symmetric tensor descriptor is:
1
X=L 3 10,0, (4)
neln
The ‘diagonalization’ of X by eigenvectors u, v, and w produces core tensor:
)\u,v,'w =X X1 X9V X3W, (5)

Au,v,w is @ coefficient from the core tensor A. Combining Eq. (4) & (5) yields:
1
>\u,v,w = N Z T®3 ¢n X1Uu X9V X3w

neln

1
= N Z <¢n7u> <¢n7v> <¢)n7w> . (6)
nelyn

o Let ¢, be ‘optimally’ projected into subspace spanned by u, v and w when

'n={Pn, 1) (¢Pn, V) (¢n, w) is maximized.

@ As our u, v, and w are orthogonal w.r.t. each other and ||¢,||2=1, simple
Lagrange equation L=II7,e’¢,+\(||¢n||3—1) yields maximum of
k=(1/y/r)" at ¢n=[(1/V7), ..., (1/v/7)]".

o For each neZy, we store ¥,, =1, /k in a so-called event vector .
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HoT with EPN (cont.)

Assume 1 € {0, 1}V stores N outcomes of drawing from Bernoulli distribution
under the i.i.d. assumption: the probability p of an event (¢, =1) & 1—p for

(1, =0) are estimated by an expected value, p=avg, ¥, =Auv,w/k (0<P<1).
The probability of at least one positive event (¢, =1) projecting into the subspace
spanned by r-tuples in N trials is:

. A N
Mvaw=1—1-p)N =1- (1—M> ) (7)
K

Each of (f) subspaces spanned by r-tuples acts as a detector of projections into
this subspace. Eq. (7) is the spectral MaxExp pooling with k£ normalization.
Considering the dot-product between EPN-norm. tensors G(X') and G():

(6(X),6(3))
Z ZAUVU’ uvw/<uu><vv><ww>

uEUEX; u'eu(y)
vEV(X eV (Y)
wew (%) :,feW&y) (8)

Hence, all subspaces of X and Y spanned by r-tuples (e.g., = 3 as above) are
compared against each other for alignment by the cosine distance.
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Backpropagating through HOSVD and/or SVD

Let M#=MMT =UMU" be an SPD matrix with simple eigenvalues, i.e.,
Xii#Nj;,Vi#j. Then U coincides also with the eigenvector matrix of tensor X’
for the given unfolding. To compute the derivative of U (we drop the index) w.r.t.
M (and thus X), one has to follow the chain rule:

Z . 8(MMT)ij
8Mkl 8 MMT OMy,
where (9]\12# wi; (N T—M#)T. (9)

For SVD, we simply have to backpropagate through the chain rule:

X =2Sym < — AU ) +U3Xm/n/ U,
1
where Sym(X):i(X—i—XT). (10)

Let X = UAUT be an SPD matrix with simple eigenvalues, i.e., \i; #\;;, Vi#J,
and U contain eigenvectors of matrix X, then one can apply %(i:uiu? and
dus,

s =i (A 1-X)T.
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Application to Action Recognition
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Figure 4: Our action recognition pipeline with the attention mechanism.

Our pipeline:

@ extract subsequences (invariance to action localization)

@ apply various sampling rates (invariance to action speed)

o extract 400D features (13D pretrained on Kinetics-400)

@ obtain intermediate matrices with feature vectors

o use count sketching (sk) to reduce dimensionality & concatenate features
Attention mechanism:

o The attention network w : R¥ R outputs an attention score

° @g’j) =w (IE (Q(i’j))) ®1) e sty sto, ...} & jE{sr1, 57, ..., }

o form final feature matrix @ f;nq) ERYN, d=4d', then passed via Eq. (4).

@ pass X via EPN to obtain G(X)€R%* X4 one per instance to classify
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Results & Discussions

SO+ spl | sp2 | sp3 | mean TO+ spl | sp2 | sp3 | mean
{no EPN) 76.2 | 75.3 | 76.7 | 76.1 || (no EPN) 754 | 74.0 | 75.0 | 4.8
HDP 81.4 | 78.8 | 80.1 | 80.1 HDP 81.8 | 79.6 | 81.3 | 80.9
MaxExp 81.7 | 79.1 | 80.1 | 80.3 || MaxExp 82.3 | 79.9 | 81.2 | 81.1
MaxExp+IDT | 86.1 | 85.2 | 85.8 | 85.7 || MaxExp+IDT | 87.4 | 86.7 | 87.5 | 87.2

ADL+I3D 81.5 | Full-FT 13D 81.3 | SCK(SO+) +IDT 85.1 | SCK(TO+) +IDT 86.1
Table 1: (top) Our model vs. (bottom) SOTA on HMDB-51.

mean mean
stat/dyn all
SO+MaxExp 92.52 82.03 89.44 87.3 88.0
SO+MaxExp+IDT | 94.92 86.63 96.02 90.8 92.5
TO+MaxExp+IDT | 95.36 86.90 97.04 91.1 93.1
T-ResNet 92.41 81.50 89.00 87.0 87.6
ADL 13D 95.10 88.30 - 91.7 -

Table 2: (top) Our pipeline vs. (bottom) SOTA on YUP++.

spl | sp2 | sp3 | sp4 | sp5 | sp6 | sp7 | mAP
SO+MaxExp+IDT | 75.7 | 82.5 | 79.4 | 75.1 | 75.7 | 76.8 | 75.9 | 77.3
TO+MaxExp+IDT | 78.6 | 83.4 | 81.5 | 788 | 81.7 | 79.2 | 79.6 | 80.4

KRP-FS 70.0 ‘ KRP-FS+IDT 76.1 ‘ GRP 68.4 ‘ GRP+IDT 75.5
Table 3: (top) Our pipeline vs. (bottom) SOTA on MPII.

hank you!
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