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Introduction Overall Improvements

* |ncorporating gold context: up to +2.2 BLEU

* End-to-end Speech Translation (E2E-5T): exciting advances BUT » Exact decoding: previous predictions used as context for subsequent
Translations from isolated utterances lack consistency. predictions.
» Context could help with ambiguity (pronouns, entities, » Multistage decoding: initial predictions from isolated utterances provide
homophones). context for subsequent decoding stages. (+0.9 BLEU).
* Previous approaches naively concatenate audio as source Controls context dependence (stages) and reduces error propagation.
Ianguage context [1] Context Context Evaluation Sets
« Extended audio limitations: memory limitation, hard to train. type size Fisher CallHome IWSLIZ2Z BOLT
: H +h mini 5 Baseline no-context 29.8 259 55 19.7 15.5
* How to Incorporate the context with minimum memaory Cost: Gold (2,2,3,3) 31.8 28.11¢ 20.3+ 16.0}
« How about additional contextual information, e.qg., speaker ID? Hyp Exact (2,2,3,3) 202109y 22077 19.8 15.6
Hyp Multistage  (2,2,3.,3) 30.77 4 26.47 19.8 15.97

Context size and speaker role

» Cross speaker context outperforms same speaker context (+.4 BLEU)

* Proposed approach: incorporate previous sentence translations » Optimal context size is between 2-3 utterances

as the initial condition for decoder. same Spk cross Spk
« E2E-ST builds upon the CTC/Attention [2], decomposes the ST a1, 031 4311 31 8317 — fontoxtz
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Figure 1. illustration of the proposed contextual E2E-ST approach = .
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» Enrich the context with speaker role information: -
2
[Context| [SpkA] I’'m from Peru, and you? [SEP] o
[SpkB] Puerto Rico. (;o
[Target] [SpkA] Oh, from Puerto Rico, oh, ok. N <

Conclusion
Results

* Incorporating context leads to significant improvements

« Context bias: train with context and inference without context « Some datasets benefit more from context (Spanish-English)

worse than baseline by up to -0.9 BLEU » Context dropout enhances robustness to context absence

» Context dropout: improves by up to +0.5 BLEU » Speaker information further improves the performance

* Major improvements from context: context style, anaphora, entities
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