Stethoscope-Guided Supervised Contrastive Learning for **Cross-domain Adaptation on Respiratory Sound Classification**

June-Woo Kim^{1,5}, Sangmin Bae^{2,5}, Won-Yang Cho^{3,5}, Byungjo Lee^{4,5}, Ho-Young Jung^{1,5} ¹ Department of AI, Kyungpook National University ² KAIST AI ³ SmartSound ⁴ National Cancer Center ⁵ MODULABS kaen2891@knu.ac.kr, hoyjung@knu.ac.kr

TL;DR

• We introduce <u>Stethoscope-Guided Supervised Contrastive Learning (SG-SCL)</u>, which aims to alleviate decreased performance arising from different stethoscope (recording device) types from the cross-domain perspective.

Before Stethoscope Domain Adaptation	After Stethoscope Domain Adapted		label	train	test	sum
Domain A Domain B Domain B		lung	Normal	2,063	1,579	3,642
			Crackle	1,215	649	1,864
			Wheeze	501	385	886
			Both	363	143	506
			Meditron	997	459	1,459
			LittC2SE	594	0	594

anchor	target	$S_p\left(\% ight)$	$S_{e}\left(\% ight)$	Score (%)
z_i	z_p	89.84 ±3.92	13.61 ± 5.67	51.73 ± 1.53
z_i	$h(z_p)$	$76.30_{\pm 1.55}$	44.60 ± 2.20	60.45 ± 0.44
$h(z_i)$	z_p	$81.87_{\pm 3.20}$	$39.83_{\pm 1.05}$	$60.85_{\pm 1.60}$
$h(z_i)$	$h(z_p)$	77.25 ± 3.43	36.35 ± 17.97	60.78 ± 0.85
$h(z_i)$	$\operatorname{sgd}(z_p)$	$76.31_{\pm 6.35}$	43.79 ± 4.38	$60.05_{\pm 1.19}$
- / >				

Quantitative Results

Stethoscope A Stethoscope B

Fig. 1: Overview of our works

LIUCZSE 394 υ 394 502 Litt3200 41 461 AKGC417L 2,510 1,836 4,346 Table 1: ICBHI dataset statistics

Motivation

device

1. Domain Adaptation (a.k.a. DANN [1])

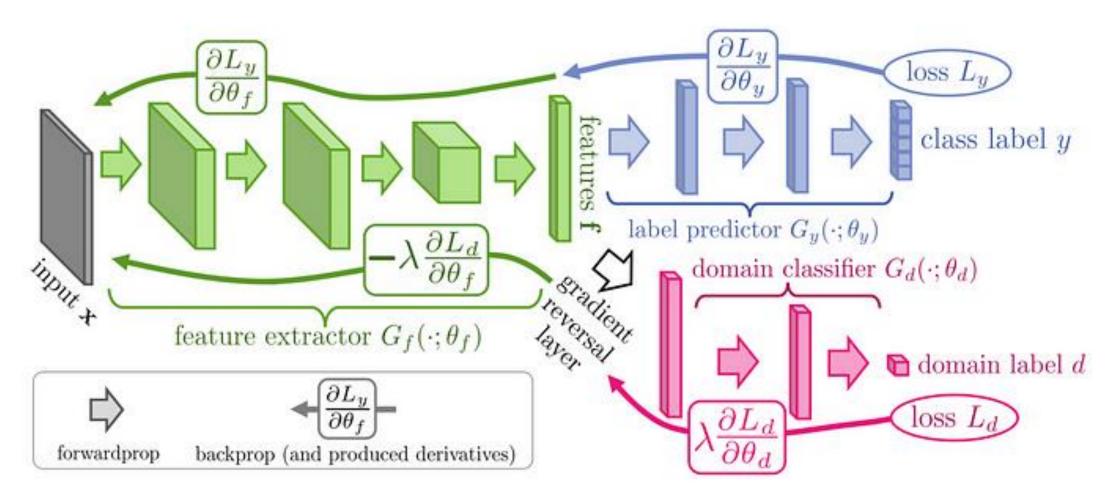
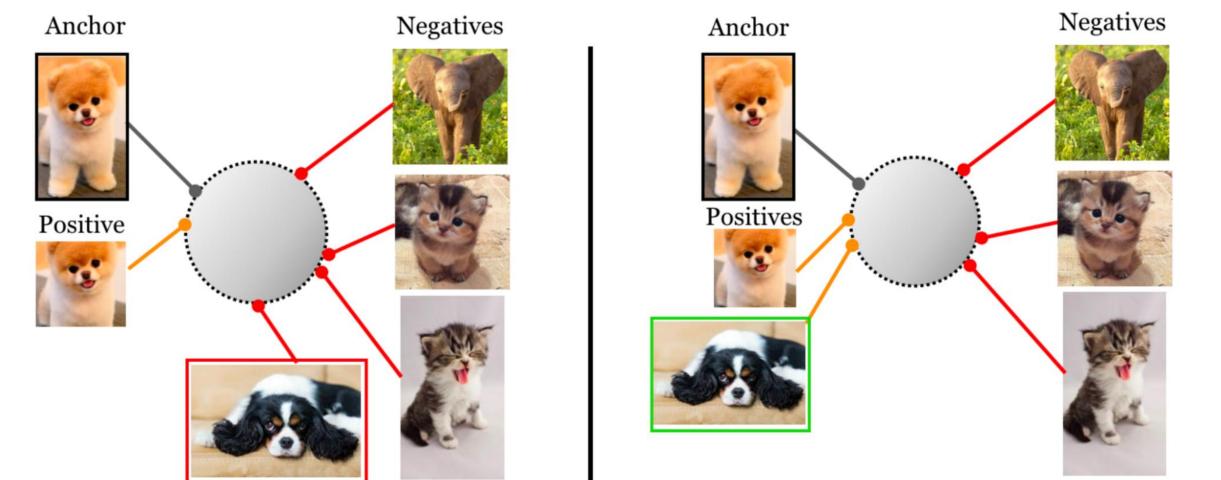


Fig. 2: Domain-adversarial training of neural networks architecture [1]

2. Supervised Contrastive Learning (SCL) [2]



79.87 ± 8.89 43.55 ± 5.93 $61.71_{\pm 1.61}$ $sgd(h(z_p))$ $h(z_i)$

Table. 2: SG-SCL performance based on two factors: <u>anchor</u> representation z_i and that of <u>target</u> z_p

• We got the <u>best result</u> when the <u>stop-gradient was applied to the target representations</u> z_p , which are the second augmented samples from same source in the multi-viewed batch. • We found that allowing gradient flows through both anchor z_i and target representations z_p simultaneously <u>did not show an improvement</u> (4th rows in Table 2).

architecture	rchitecture method pretrain		$S_p(\%)$	$S_{e}\left(\% ight)$	Score (%)
	CE		$73.48_{\pm 5.93}$	$39.24_{\pm 2.43}$	$57.46_{\pm 1.05}$
EfficientNet	DAT	IN	89.99 ±7.15	$11.78_{\pm 7.05}$	$50.89_{\pm 0.69}$
	SG-SCL		$81.58_{\pm3.38}$	$33.85_{\pm 3.75}$	$57.72_{\pm 1.32}$
	CE		$74.72_{\pm 3.43}$	$33.95_{\pm 3.88}$	$54.33_{\pm 0.91}$
ResNet18	DAT	IN	$91.26_{\pm 6.32}$	$12.03_{\pm 5.86}$	$51.51_{\pm 0.34}$
	SG-SCL		$75.58_{\pm6.36}$	$\textbf{34.63}_{\pm 5.98}$	$\textbf{55.10}_{\pm 1.18}$
	CE		$80.13_{\pm 2.64}$	$35.91_{\pm 3.52}$	$58.10_{\pm 0.59}$
CNN6	DAT	IN	$88.57_{\pm 5.66}$	$13.73_{\pm 6.47}$	$51.15_{\pm 0.45}$
	SG-SCL		$78.16_{\pm 3.49}$	$\textbf{38.05}_{\pm 4.41}$	$\textbf{58.11}_{\pm 0.64}$
	CE		$77.14_{\pm 3.35}$	$41.97_{\pm 2.21}$	$59.55_{\pm 0.88}$
AST	DAT	IN + AS	$77.11_{\pm 7.20}$	$41.99_{\pm 5.00}$	$59.81_{\pm 1.25}$
	SG-SCL		79.87 $_{\pm 8.89}$	$43.55_{\pm 5.93}$	61.71 ±1.61
Table 3: Respiratory sound classification performance according to different architectures using CE, DAT, and SG-SCL					

Self Supervised Contrastive

Supervised Contrastive

Fig. 3: Self-supervised contrastive learning vs. supervised contrastive learning [2]

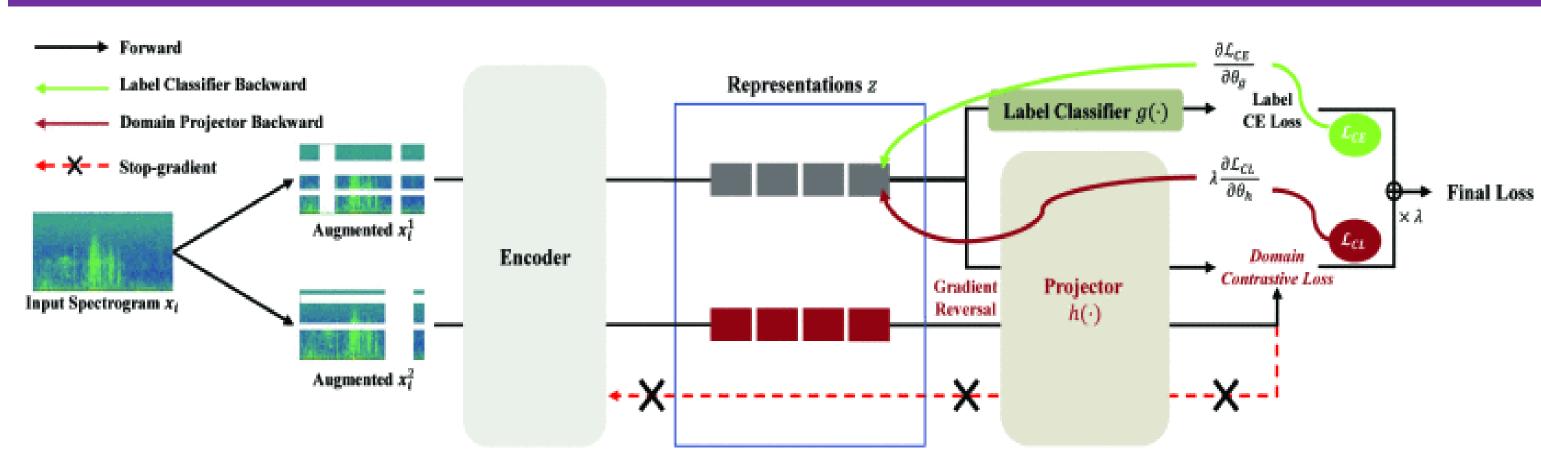


Fig. 4: Overall illustration of proposed SG-SCL for cross-domain adaptation

- 1. DAT (Domain Adaptation Training)
- $\mathcal{L}_{\text{DAT}} = \mathcal{L}_{\text{CE}} + \lambda \mathcal{L}_{\text{DA}}$

- We trained CE, DAT, and SG-SCL methods on different architectures with the ICBHI dataset under the same conditions without additional learning techniques.
- As a result, the proposed SG-SCL method achieved the best Score in all architectures.

	method	architecture	pretrain	venue	$S_p(\%)$	$S_e(\%)$	Score (%)
	CNN-MoE [19]	C-DNN	-	JBHI'21	72.40	21.50	47.00
	RespireNet [3] (CBA+BRC+FT)	ResNet34	IN	EMBC'21	72.30	40.10	56.20
	Ren et al. [4]	CNN8-Pt	-	ICASSP'22	72.96	27.78	50.37
	Chang et al. [20]	CNN8-dilated	-	INTERSPEECH'22	69.92	35.85	52.89
al.	Wang et al. [5] (Splice)	ResNeSt	IN	ICASSP'22	70.40	40.20	55.30
eval.	Nguyen et al. [6] (CoTuning)	ResNet50	IN	TBME'22	79.34	37.24	58.29
-class	Moummad et al. [16] (SCL)	CNN6	AS	arXiv'22	75.95	39.15	57.55
- 17	Bae et al. [7] (Fine-tuning)	AST	IN+AS	INTERSPEECH'23	77.14	41.97	59.55
4	Bae et al. [7] (Patch-Mix CL)	AST	IN+AS	INTERSPEECH'23	81.66	<u>43.07</u>	62.37*
	DAT [ours]	AST	IN+AS	ICASSP'24	$77.11_{\pm 7.2}$	$42.50_{\pm 5.39}$	$59.81_{\pm 1.25}$
	SG-SCL [ours]	AST	IN+AS	ICASSP'24	$79.87_{\pm 8.89}$	$43.55_{\pm 5.93}$	$61.71_{\pm 1.61}$
	CNN-MoE [19]	C-DNN	-	JBHI'21	72.40	37.50	54.10
al.	Nguyen et al. [6] (CoTuning)	ResNet50	IN	TBME'22	79.34	50.14	64.74
eval.	Bae et al. [7] (Fine-tuning)	AST	IN+AS	INTERSPEECH'23	77.14	56.40	66.77
2-class	Bae et al. [7] (Patch-Mix CL)	AST	IN+AS	INTERSPEECH'23	81.66	55.77	68.71*
	DAT [ours]	AST	IN+AS	ICASSP'24	$77.11_{\pm 7.2}$	$56.98_{\pm 7.42}$	$67.04_{\pm 1.29}$
	SG-SCL [ours]	AST	IN+AS	ICASSP'24	$79.87_{\pm 8.89}$	$57.97_{\pm 8.96}$	$68.93_{\pm 1.47}$

Table 4: Comprehensive comparison of the ICBHI dataset for the respiratory sound classification task (60-40% official split)

- In the 4-class evaluation, the proposed SG-SCL achieved a 61.71% Score.
- Our SG-SCL achieved a state-of-the-art Score with a 68.93% in the 2-class evaluation.
- Moreover, the proposed SG-SCL obtained the highest Sensitivity (S_e) in both 4-class and 2-class evaluations, suggesting that our method is the most accurate model for actually classifying abnormal respiratory sounds.

Method

where $\mathcal{L}_{CE} = -\sum_{i=1}^{n} y_i \log(\hat{y}_i)$ and $\mathcal{L}_{DA} = -\sum_{i=1}^{n} d_i \log(\hat{d}_i)$ are CE loss with lung sound label y and stethoscope domain label d, and the predicted probabilities \hat{y} and \hat{d} are obtained by label and domain classifiers, λ is a domain regularization parameter with reversal gradients, respectively.

2. SG-SCL (Stethoscope-Guided SCL)

•
$$\mathcal{L}_{\text{CL}} = \sum_{i \in I} -\log \left\{ \frac{1}{|P(i)|} \sum_{p \in P(i)} \frac{e(h(z_i) \cdot \text{sgd}(h(z_p))/\tau)}{\sum_{a \in A(i)} e(h(z_i) \cdot \text{sgd}(h(z_a))/\tau} \right\}$$

where index *i* is the <u>anchor</u> index from $A(i) \equiv I \setminus \{i\}, P(i) \equiv \{p \in A(i): d_p = d_i\}$ represents the collection of <u>all positive samples</u> within the <u>multi-viewed batch</u> that corresponds to the *i*-th sample, z is the encoder output, e and sgd(\cdot) denote the exponential function and stop-gradient operation, h is projector, both z and h have the <u>same dimension</u>, and the final loss is $\mathcal{L}_{CE} + \lambda \mathcal{L}_{CL}$.

[1] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." Journal of machine learning research 2016. [2] Khosla, Prannay, et al. "Supervised contrastive learning." NeurIPS 2020.

Qualitative Results

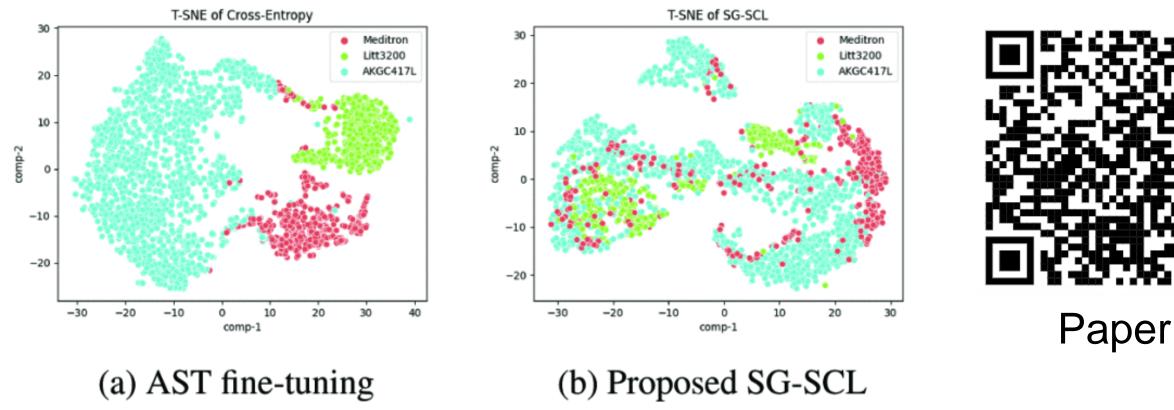


Fig. 5: T-SNE results on ICBHI test set for stethoscope labels

• The AST fine-tuning results in Fig. 5 (a) show that the representations are <u>clustered</u> according to the stethoscopes, while our SG-SCL results in Fig. 5 (b) are well mixed regardless of the recording device type.

Code