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Introduction

The class of functions that any stationary pointis a global
minimizer is defined as follows.

Definition (Invexity). Let f : R™ — R be locally Lipschitz;
then [ is invex if there exists a function n : R™ x R" — R"
such that

flx)— f(y) > ¢, y).
Va,y € R, V¢ € 9f(y).

Hierarchy of optimizable functions
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Fig 1. Qur contribution is identifying invex and quasi-
invex functions relevant for imaging applications.

Background

A reconstruction task is the solution of:

s N
minimize f(z) + g(z)
subject to Ax + Bz =y

N y

where A € R™*", B € R™*P, and y € R™.
In order to solve it, the Alternating Direction

Method of Multipliers is used.

* Global guarantees of ADMM are not
availahle for non-convex mappings.

* (Global guarantees of ADMM were
extended to prox-regular functions.

* Prox-regular functions do not
ensure global minima
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Material and Methods Examples of invex functions

Theorem 2. All the following functions for ¢,6 > 0, and a € R
are admissible

Proposed family of functions

N x” i
Definition  Let & : R” — R such that h(z) = 37, s(|z[i]|). h@) = ;10% (” 5 ) ©)
where s : [0,00) — [0,00) and s"(w) > 0 forw € (0,00). If s " o2y
with 5(0) = 0 such that s(w)/w? is non-increasing on (0, co), then h(z) =) I +Z452 (6)
h(ax) is said to be an admissible function. i=1
h(m) = i M (((w[z]/c)Q N 1)0/2 B 1) -
_ e la — 2
C o © =1
Properties of proposed family of functions . 2 220
h(x) = ;log (1+x°[1]) — 522fi] 4 2 (8)
Theorem 1. Let f,g : R™ — R be two admissible functions as
in Definition , such that f(x) = > " | ss(|z[¢]|), and g(x) = =
> i1 Sg(|[7]]). Then the following holds: ADMM a"go"thm
* f(ax), and g(x) are invex; L,(x,z,v) = f(x)+ g(z) + g”Am + Bz —y+v|3.
* h(x) = af(x) + Bg(x) is an admissible function (therefore in- where v € R™ is the dual variable, and p > 0. The optimization of
vex) for every a, 3 > 0; L,(x, z,v) is summarized as
e h(z) =" (s o sqg)(|x[?]]) is admissible function. ") .= arg min (f(a:) + gllAaz +Bz"Y —y+ v(‘)||3§)
xER"
o h(m) = Z?:l min(sf(la:[z'ﬂ), 89|$[Z]|) 1s admissible function. S(t+1) arg min (g(z) n §||A33(t+1) + Bz —y+ v(t)”g)
zZERP
o h(z) =>_" , max(ss(|z[t]]), sqg|x[7]|) is admissible function. -
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Results and Experiments

We evaluate the utility of the proposed family of invex functions
to solve a Total Variation regularization problem.

Convergence guarantees

Theorem 3. Let f(x), g(2z) be any invex construct in Theorem 1,
with po,(A) > 1, and po,(B) > 1 (maximum singular values
of A, and B respectively). Assume L,(x, z,v) has a saddle point,
that is, there exists (z*, 2", v™) for which

Lo(e",z"v)< Ly(x",z",v") < Ly(x,z,v"),

for all &, z, and v. Then
e Residual ||7'"||2 = ||Az'Y + Bz — y||2 — 0;

« v'Y 5 v* ast — oo where v” is the dual optimal point;

* f(@") +9(2'") = f(x7) + g(z").
Additionally, the convergence rate is O(1/t)

Numerical experiments

Table 1: Performance Results: Best: green, Second best: yellow,
and the worst: red.

9(z)
f(zx) Metrics £y Log Log-sub  SCAD £1-norm
SSIM 0.6403 0.6267 0.6231 0.6195 0.6159
Eq. (5) | MS-SSIM 0.9344 09296  0.9249 0.9202 0.9156
ADMM-residual | 8.8-107* 1.1-107%* 1-107* 131072 || 1.5-107°
SSIM 0.6361 0.6230  0.6166 0.6295 || 0.6104
Eq. (6) | MS-SSIM 0.9289 0.9208 0.9168 0.9248 0.9128
ADMM-residual | 9.4-107* 1.3-107® 15107% 1.1.107% || 1.9-107°
SSIM 0.6488 0.6378 0.6432 0.6324 0.6271
Eq. (7) | MS-SSIM 0.9455 0.9331 0.9393 0.9271 0.9211
ADMM-residual | 8-107* 88.107* 84-100* 94.107* || 1-107°
SSIM 0.6445 0.6327 0.6386  0.6270 0.6214
Eq. (8) | MS-SSIM 09399 09290 09344  0.9236 0.9183 SSIM=0.6247
ADMM-residual | 84-107* 1-107* 9.107* 1.1.107* || 1.2-107°
SSIM 06320  0.6182 0.6250  0.6050 0.6115 : : :
{>-norm | MS-SSIM 0.9235 0.9168 0.9201 0.9101 0.9134 Flg 2. Restored Images using the ADMM. We employ the
ADMM-residual | 1:1077 151077 12107 ' 281077 ]| 19-107 SSIM map for each image and its averaged value.

Conclusion

* This paper identifies a family of functions for signal restoration.

» We provided the proof for the invex hehaviours of these functions and global optimality with their
convergence rate.

* This theoretical analysis to handle ADMM optimization problem, is first in its kind, and the
approach is applicable to various other constrained optimization probhlems.
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