

Yijia Zhang, Deepak Mishra, Hassan Habibi Gharakheili, and Derrick Wing Kwan Ng

University of New South Wales, Sydney e-mail: {yijia.zhang6, d.mishra, h.habibi, w.k.ng}@unsw.edu.au

Introduction

2024 KOREA

Background

- \checkmark The advantages of employing unmanned aerial vehicles (UAVs) in Internet-of-Things (IoT) wireless sensor networks (WSNs) comprise: (a) LoS communication (b) Wireless power transfer (WPT) (c) Collect data (CD)
- \checkmark Battery-powered sensors deployed in the WSN, called ground nodes (GNs), can: (a) Monitor environmental (b) Transmit collected data (c) Energy harvesting (EH)
- \checkmark WPT to GNs from UAV for collecting data from them enables sustainable WSNs
- \checkmark Challenges to be addressed during UAV-assisted WPT and CD from GNs: (a) Limitations on battery storage and operation time of the UAV and GNs. (b) QoS requirements at GNs that include total system throughput.

State-of-art

- \checkmark UAV trajectory designs in UAV-assisted networks to fulfil various requirements.
- ← Employed UAVs to develop sustainable networks.

Innovation and Significance

- ✓ Existing works **overlooked** the possibility of WPT from UAV to GNs for CD
- \checkmark Ignored the operation time constraint of the UAV
- \checkmark Investigation of UAV-assisted wireless-powered data collection network.
- Operation time minimisation by optimising time allocation and UAV trajectory.

- \checkmark Wireless-powered network that consists of one UAV and k GNs.
- \checkmark UAV has 2 antennas: 1) charging GNs, 2) collecting data from GNs using TDMA.
- \checkmark Locations of GNs (GNi={ $x_i, y_i, 0$ }) and the data center ($F = \{x_0, y_0, 0\}$) are fixed.
- \checkmark Positions of UAV above GNi is $U_i = \{x_i, y_i, H\}$, and at F is $U_0 = \{x_0, y_0, 0\}$.
- \checkmark UAV takes off from data center at constant speed v to CD from GNs and return
- \checkmark During the operation, UAV's trajectory is represented by a sequence s ,
- \checkmark The time allocated for each GN and the data center is represented by τ

✓ Distance from
$$
U_{[s]_l}
$$
 to $U_{[s]_j}$: $d_{i,j} = \sqrt{(x_{[s]_l} - x_{[s]_j})^2 + (y_{[s]_l} - y_{[s]_j})^2 + (z_{[s]_l} - z_{[s]_j})^2}$

 \checkmark Flying time from $U_{[s]_i}$ to $U_{[s]_j}$: $\delta_{i,j} = \frac{d_{i,j}}{n}$, and Total flying time: $T_F = \sum_{i=0}^k \delta_{i,i+1}$.

- \checkmark UAV flies at its minimum safety altitude H except for taking off or landing down.
- ✓ Channel reciprocity and perfect CSI availability at UAV is assumed

 \checkmark Channel power gain between UAV at $U_{[s]_i}$ and GN[s]_j is : $h_{i,j} = \hat{P}_{LoS} d_0 d_{i,j}^{\frac{1}{2}} a_{[s]_i}$

 \checkmark AWGN noise is considered with zero mean and σ^2 as the variance

Performance Metrics

• The energy available at GN[s]_i when the UAV reaches it is $E_i = \eta_i \sum_{j=0}^{i-1} P_H h_{i,j} \tau_i$ where η_i is GN[s]_i's RF-to-DC rectification efficiency

Problem Definition

- \checkmark Minimise UAV operation time while satisfying throughput and time constraints (P1): minimize $T_F + \sum_{i=0}^{k} \tau_i$, subject to
	- C1: $\sum_{i=1}^{k} \mathcal{T}_i(\tau_i) \ge \mathcal{T}_{th}, \mathcal{T}_{th}$ is the total throughput requirement.
C2: $\tau_i \ge 0, i \in \{0,1,2,\dots,k\}, C3$: $\sum_{i=0}^{k} \tau_i T_F \le T$,
C4: $d_{[s]_i,[s]_j} = \delta_{i,j} v$, C5: $[s]_i \in \{0,1,\dots,k+1\}, i \in \{1,2,\dots,k+2\}.$
- \checkmark (P2) is a mixed-integer nonconvex problem, we decouple it into 2 problems \checkmark Time allocation problem (P2) optimizes time τ for a given trajectory: (P2): minimize $\sum_{i=0}^{k} \tau_i$, s.t. C1, C2, C3
- \checkmark After obtaining the optimal time allocation, the trajectory planning for the UAV in $(\mathcal{P}1)$ can be reduced to a travelling salesman problem (TSP).

Proposed Joint Optimization Methodology

- \checkmark Create a population of n_{pop} chromosomes to represent UAV's access order by generating sequences s.
- \checkmark For each chromosome, obtain time allocations τ by solving (P2). This problem is proved to be convex and can be tackled by exploiting **KKT** conditions.
- \checkmark Evaluate and find n_{best} high-fitness parent chromosomes with less operation time while satisfying the constraints. Generate n_{pop} new chromosomes and apply same steps until there are n_{iter} high-fitness parent chromosomes.
- \checkmark Set the best high-fitness parent chromosomes across stored in n_{iter} with minimum operation time to be the optimal UAV trajectory s^* and time allocation as τ^* .

 \checkmark More reliable operation of UAV, which provides lower total operation time while satisfying throughput requirements compared to the benchmarks

A Acknowledgments: This work is supported by the Australian Research Council's (ARC) Discovery Early Career Researcher Award (DE230101391), ARC Discovery Projects (DP230100603), GROW Early Career Academics Grant, and MDPI AG.

• With $\gamma_i = \frac{\eta_i P_H h_{i,i}}{\sigma^2}$, the throughput of GN[s]_i is: $T_i(\tau_i) = \frac{1}{T} \tau_i \log_2 \left(1 + \frac{\gamma_i \sum_{j=0}^{i-1} \tau_j h_{i,j}}{\tau_i}\right)$