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Introduction

• Problem on fine-tuning the SSL model: Domain shift

• When fine-tuning pre-trained models to specialized or narrow 
target domains, the available datasets are significantly smaller

• The distribution of the downstream task is different from that 
of the pre-training task 

• Leads to poor performance on the downstream task
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• Motivation: task adaptive pre-training (TAPT) 

• Inspired by based on TAPT [1], which aims to bridge the gap 
between pre-training and the target domain by continually 
learning the pre-trained model on the target dataset

• TAPT does not necessarily improve performance and degrade 
the performance of the downstream task as the number of 
continual learning iterations increases

Proposed Method

Experiments
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• A-TAPT method incorporates adversarial regularization into the 
process of continual learning 
• Enabling the model to adapt to domain shift through input 

perturbations
• Generalize better and overfitting less than the model trained by 

TAPT

• Continual Learning Based on adversarial regularization 
on TAPT (A-TAPT)

• Experiment on Saarbrucken Voice Database (SVD)
• This improvement was because the continual learning reduced 

the domain gap between the conversational speech for the pre-
training and the pathological speech for the downstream task

• Contribution of each transformer layer
• The top layers in a transformer 

• Contribute the most for content and semantic tasks

• The lower layers 
• Have great impact on speaker characteristics 

• Comparison the performance of with 𝐿𝑅,𝐶 and 𝐿𝑅,𝑄

• Applying 𝐿𝑅,𝐶, resulting in performance degradation

• 𝑧𝑡 and ǁ𝑧𝑡 may belong to different codevectors
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• Perturbations to the transformer

• Perturbations to the quantizer

Model ALL ORGANIC Avg. 

SVM [2] 69.74 76.44 73.09 
ResNet50 [2] 69.27 70.87 70.07 
Vanilla 81.12±1.12 81.77±0.97 81.45 
TAPT 82.21±0.94 83.14±0.74 82.68 
A-TAPT (𝐿𝑅,𝐶) 84.97±0.62 85.92±0.55 85.45 

 

• Voice Pathology Detection (VPD)

• Voice pathology is a common and significant problem 

• With voice quality, pitch, and loudness 

• Due to abnormally vibrate in vocal folds

• Continual learning iterations 
• TAPT

• It degraded with a large standard deviation at iteration range of 
30K~50K

• A-TAPT 
• It resulted in consistent improvement in the UAR as the number 

of continual learning iterations increased

Model 𝜖 ALL ORGANIC 
A-TAPT (𝐿𝑅,𝑄) 10−4 80.47±1.38 81.41±1.24 
A-TAPT (𝐿𝑅,𝐶) 10−4 84.97±0.62 85.92±0.55 
A-TAPT (𝐿𝑅,𝑄 + 𝐿𝑅,𝐶) 10−4 81.49±1.31 82.24±1.13 

 


