Adversarial Continual Learning to Transfer Self-Supervised Speech Representations for Voice Pathology Detection

Dongkeon Park¹, Yechan Yu², Dina Katabi³, Hong Kook Kim¹

¹GIST, AI Graduate School, ²Superton Inc., ³MIT, Department of Electrical Engineering and Computer Science

dongkeon@gm.gist.ac.kr, ato@supertone.ai, dina@csail.mit.edu, hongkook@gist.ac.kr

Introduction

- Voice Pathology Detection (VPD)
 - Voice pathology is a common and significant problem
 - With voice quality, pitch, and loudness
 - Due to abnormally vibrate in vocal folds
- Problem on fine-tuning the SSL model: Domain shift
 - When fine-tuning pre-trained models to specialized or narrow target domains, the available datasets are significantly smaller

Experiments

- Experiment on Saarbrucken Voice Database (SVD)
 - This improvement was because the continual learning reduced the domain gap between the conversational speech for the pretraining and the pathological speech for the downstream task

Model	ALL	ORGANIC	Avg.
SVM [2]	69.74	76.44	73.09
ResNet50 [2]	69.27	70.87	70.07
Vanilla	81.12 ± 1.12	81.77 ± 0.97	81.45
TAPT	82.21 ± 0.94	83.14 ± 0.74	82.68
A-TAPT (L_{RC})	$84.97{\pm}0.62$	$85.92{\scriptstyle\pm}0.55$	85.45

- The distribution of the downstream task is different from that of the pre-training task
- Leads to poor performance on the downstream task

Motivation: task adaptive pre-training (TAPT)

- Inspired by based on TAPT [1], which aims to bridge the gap between pre-training and the target domain by continually learning the pre-trained model on the target dataset
- TAPT does not necessarily improve performance and degrade the performance of the downstream task as the number of continual learning iterations increases

- The top layers in a transformer
 - Contribute the most for content and semantic tasks
- The lower layers
 - Have great impact on speaker characteristics

- Continual learning iterations
 - TAPT
 - It degraded with a large standard deviation at iteration range of 30K~50K
 - A-TAPT
 - It resulted in consistent improvement in the UAR as the number of continual learning iterations increased

ΤΑΡΤ			

 Continual Learning Based on adversarial regularization on TAPT (A-TAPT)

Perturbations to the transformer

Proposed Method

$$L_{R,C} = \frac{1}{n} \sum_{t=1}^{T} \max_{\|\tilde{z}_t - z_t\|_p \le \epsilon} l_s(sim(C(\tilde{z}_t), q_t), sim(C(z_t), q_t))$$

Perturbations to the quantizer

$$L_{R,Q} = \frac{1}{n} \sum_{t=1}^{r} \max_{\|\tilde{z}_t - z_t\|_p \le \epsilon} l_s(Gumbel(Q(\tilde{z}_t)), Gubmel(Q(z_t)))$$

- Comparison the performance of with $L_{R,C}$ and $L_{R,Q}$
 - Applying $L_{R,C}$, resulting in performance degradation • z_t and \tilde{z}_t may belong to different codevectors

Model	ϵ	ALL	ORGANIC
A-TAPT $(L_{R,0})$	10^{-4}	80.47 ± 1.38	81.41 ± 1.24
A-TAPT $(L_{R,C})$	10^{-4}	84.97 ± 0.62	$85.92{\scriptstyle\pm}0.55$
A-TAPT $(L_{R,Q} + L_{R,C})$	10^{-4}	81.49 ± 1.31	82.24±1.13

ACKNOWLODGEMENT

- This work was supported in part by Institute of Information & communications Technology Planning & evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00963, Localization Technology Development on Spoken Language Synthesis and Translation of OTT Media Contents) and by the GIST-MIT Research Collaboration grant funded by the GIST in 2023.
- A-TAPT method incorporates adversarial regularization into the process of continual learning
 - Enabling the model to adapt to domain shift through input perturbations
 - Generalize better and overfitting less than the model trained by TAPT

REFERENCES

 S. Gururangan et al., "Don't stop pretraining: Adapt language models to domains and tasks," in *Proc. ACL, Virtual*, 2020, pp. 8342–8360.
M. Huckvale and C. Buciuleac, "Automated detection of voice disorder in the Saarbrucken voice database: Effects of pathology subset and audio materials," in *Proc. Interspeech*, Brno, Czechia, 2021, pp. 4850–4854.

