

GTCRN: A SPEECH ENHANCEMENT MODEL REQUIRING ULTRALOW COMPUTATIONAL RESOURCES

Xiaobin Rong^{1,2}, Tianchi Sun^{1,2}, Xu Zhang³, Yuxiang Hu², Changbao Zhu², Jing Lu^{1,2}

NJU

¹Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China ²NJU-Horizon Intelligent Audio Lab, Horizon Robotics, Beijing 100094, China ³Jiangsu Thingstar Information Technology Co., Ltd., Nanjing 210046, China

INTRODUCTION

We introduce an ultra-lightweight speech enhancement model

- Only 23.7 K parameters and 39.6 MMACs per second
- Achieves a PESQ of 2.87 on the VCTK-DEMAND dataset and a DNSMOS of **3.44** on the DNS3 blind test set

Speech Enhancement (SE)

- Aims at recovering clean speech from its noise-contaminated mixture
- Has been advanced by deep learning models, enabling the high performance of noise suppression

EXPERIMENTS

Datasets

- VCTK-DEMAND
 - Resampled to 16 kHz
 - 10,000 for training, 1,572 for validation, 824 for test
- DNS3
 - SNR: -5 15 dB
 - Capacity: 2000 hours
 - Argumentation: Include Mandarin corpus from DiDiSpeech^[1]
 - 40,000 pairs of 8-second data for training per epoch, 840 for validation, 800 for test
 - DNS3 blind test set is also used for test

Challenges

- Current SOTA SE models call for substantial computational resources, making them undeployable on edge devices
- Existing lightweight SE models are still too large

Thus, we propose to design an ultra-light SE model that can achieve competitive performance with recent baseline models

METHODS

Metrics

- Intrusive: SISNR, PESQ, STOI
- Non-intrusive: DNSMOS

Baseline Models:

RNNoise^[2], PercepNet^[3], DeepFilterNet^[4], S-DCCRN^[5]

Grouped Temporal Convolutional Recurrent Network (GTCRN)

- BM/BS: band merging / band splitting
- Conv: convolution block
- DeConv: deconvolution block
- GT-Conv: grouped temporal convolutional block
- SFE: subband feature extraction
- TRA: temporal recurrent attention
- G-DPRNN: grouped dual-path RNN

Loss Function

 $\mathcal{L} = \alpha \mathcal{L}_{SISNR}(\tilde{s}, s) + (1 - \beta) \mathcal{L}_{mag}(\tilde{S}, S) + \beta \left(\mathcal{L}_{real}(\tilde{S}, S) + \mathcal{L}_{imag}(\tilde{S}, S) \right)$ $\|\boldsymbol{S}_t\|^2$ $\langle \tilde{s}, s \rangle s$

 $\mathcal{L}_{SISNR} = -\log_{10} \left(\frac{\|\mathbf{s}_t\|}{\|\mathbf{\tilde{s}} - \mathbf{s}_t\|^2} \right); \mathbf{s}_t = \frac{\mathbf{v}_t}{\|\mathbf{s}\|^2}$ $\mathcal{L}_{mag}(\tilde{S},S) = \mathrm{MSE}\left(|\tilde{S}|^{0.3}, |S|^{0.3}\right)$ $\mathcal{L}_{real}(\tilde{S}, S) = \text{MSE}\left(\tilde{S}_r / |\tilde{S}|^{0.7}, S_r / |S|^{0.7}\right)$ $\mathcal{L}_{imag}(\tilde{S}, S) = \text{MSE}\left(\tilde{S}_i / |\tilde{S}|^{0.7}, S_i / |S|^{0.7}\right)$

RESULTS

Table 1: Ablation study results on DNS3 test set									
SFE	TA ^[6]	TRA	Para. (K)	MACs (M/s)	SISNR	PESQ	PESQ		
_	_	-	-	-	3.92	1.30	0.789		
×	×	×	13.35	33.91	9.87	1.87	0.834		
×	 ✓ 	×	14.84	34.00	10.00	1.89	0.838		
×	×	\checkmark	21.65	34.47	10.25	1.91	0.840		
\checkmark	×	×	15.37	39.07	10.10	1.90	0.838		
\checkmark	✓	×	16.86	39.16	10.29	1.92	0.841		
\checkmark	×	\checkmark	23.67	39.63	10.39	1.94	0.844		

Table 2: Performance on VCTK-DEMAND test set

	Para. (M)	MACs (G/s)	SISNR	PESQ	PESQ
Noisy	-	-	8.45	1.97	0.921
RNNoise ^[2] (2018)	0.06	0.04	_	2.29	-
PercepNet ^[3] (2020)	8.00	0.80	_	2.73	-
DeepFilterNet ^[4] (2022)	1.80	0.35	16.63	2.81	0.942
S-DCCRN ^[5] (2022)	2.34	-	_	2.84	0.940

	Dara (M)	MACs (G/s)	DNCMAC DOAD	DNSMOS-P.835		
	Para. (M)		DN31403-1-000	BAK	SIG	OVRL
Noisy	-	-	2.96	2.65	3.20	2.33
RNNoise ^[2] (2018)	0.06	0.04	3.15	3.45	3.00	2.53
S-DCCRN ^[5] (2022)	2.34	-	3.43	-	-	-
GTCRN (proposed)	0.02	0.04	3.44	3.90	3.00	2.70

Table 3: Performance on DNS3 blind test set

GTCRN (proposed)	0.02	0.04	18.83	2.87	0.940

Source code and audio examples are available at my GitHub:

DISCUSSIONS

Current Limitations

- Performance degrades in low-SNR condition
- Generalization ability is constrained due to limited complexity

Future Work

- Transition from model design to framework development for further improvement
- Strengthen generalizability of the model

REFERENCES

- [1] Tingwei Guo, Cheng Wen, Dongwei Jiang, Ne Luo, et al., "Didispeech: A Large Scale Mandarin SpeechCorpus," in ICASSP, 2021, pp. 6968–6972.
- [2] Jean-Marc Valin, "A hybrid DSP/deep learning approach to real-time full-band speech enhancement," in2018 IEEE 20th international workshop on multimediasignal processing (MMSP). IEEE, 2018, pp. 1–5. [3] Jean-Marc Valin, Umut Isik, Neerad Phansalkar, RitwikGiri, et al., "A Perceptually-Motivated Approach forLow-Complexity, Real-Time Enhancement of FullbandSpeech," in Proc. Interspeech 2020, 2020, pp. 2482–2486. [4] Hendrik Schroter, Alberto N Escalante-B, TobiasRosenkranz, and Andreas Maier, "DeepFilterNet: A low complexity speech enhancement framework for full-band audio based on deep filtering," in ICASSP, 2022, pp. 7407–7411. [5] Shubo Lv, Yihui Fu, Mengtao Xing, et al., "S-DCCRN: Super Wide Band DCCRN with Learnable Complex Feature for Speech Enhancement," in ICASSP, 2022, pp. 7767–7771.
- [6] Qiquan Zhang, Qi Song, et al., "Time-Frequency Atten-tion for Monaural Speech Enhancement," in ICASSP,2022, pp. 7852–7856.

14-19 April 2024

