

Hierarchical VAE Based Semantic Communications for POMDP Tasks

Paper ID: 2730

Dezhao Chen¹ and Wenhui Hua²

¹ School of Informatics, Xiamen University, Xiamen, China

² School of Electronic Science and Engineering(National Model Microelectronics College), Xiamen University, Xiamen, China

1000

ICASSP

2024 KOREA

INTRODUCTION

Background

Semantic communication, a potential 6G technology, focuses on efficiently transmitting compact information for tasks without compromising performance, even with limited bandwidth. This is especially beneficial for dynamic tasks like remote control. **Semantic communication for POMDP tasks**

Hierarchical VAE for RL

- Hierarchical coding
 - z_1 : sufficient feature, encode enough information of obs.
 - z_2 : compact feature, encode task-relevant information.
- \succ Concatenate z_1 and z_2 as the transmission feature.
- > Using reinforcement learning training to approximately

- \succ Rich semantics in observation and action spaces.
- > Offering diverse control scenarios.
- > Delivering a well-defined semantic objective that is closer to the fundamental challenge of semantic emergence.

Main challenges

- The extraction of decision semantic information.
- > The trade-off between sufficiency and compactness.
- Low sample efficiency and poor generalization.

optimize the first term of the KL objective.

Fig. 3 The implementation of HVRL.

EXPERIMENT

METHODOLOGY

System model

Settings

- Environment: Cartpole swingup of DeepMind Control Suite.
- > Metrics: cumulative reward and MSE of state prediction.

Results and discussion

Controller Fig. 1 Semantic communication system for remote control tasks.

Hierarchical Feature Encoding Based on HVAE

- Probability model
 - Encoder: $q(z_1, z_2, \dots, z_n | o) = q(z_1 | o)q(z_2 | o) \dots q(z_n | o)$
 - **Decoder:** $p(o, z_1, ..., z_n) = p(z_n) \prod p(z_i | z_{i+1})$
- > Optimization objective:
 - $\mathcal{L}_{\text{HVAE'}} = \mathbb{E}_{q_{\theta}(z_1|o)}[\log p_{\theta}(o \mid z_1)]$ $-\mathcal{D}_{\mathrm{KL}}[q_{\phi}(z_1,\ldots,z_n \mid o) \parallel p_{\theta}(z_1,\ldots,z_n)]$
 - $\mathcal{D}_{\mathrm{KL}}[p\|q] = \mathcal{D}_{\mathrm{KL}}(q_{\phi}(z_n|o)\|p(z_n))$ + $\mathbb{E}_{q_{\phi}(z_{n}|o)}[\mathcal{D}_{\mathrm{KL}}(q_{\phi}(z_{n-1}|o) || p_{\theta}(z_{n-1}|z_{n}))]$ +...+ $\mathbb{E}_{q_{\phi}(z_{2}|o)}[\mathcal{D}_{\mathrm{KL}}(q_{\phi}(z_{1}|o) \parallel p_{\theta}(z_{1}|z_{2}))]$

Predictor	VRL	HVRL	z1	z2
Linear	0.8426(4)	0.0102(1)	0.0718(3)	0.0249(2)
Non-linear	0.8124(4)	0.0016(1)	0.0017(2)	0.0043(3)

Table 2. The predictor performance of different methods.

- > The proposed method achieves a good task performance and improves the sampling efficiency.
- $\succ z_1$ has low sampling efficiency; and z_2 is a good representation of the state, but it cannot complete the task well.

Fig. 4 Performance of different methods on cartpole-swingup environment.

CONCLUSION

- > **HVRL**, a VAE-based hierarchical encoding technique for RL.
- > Balancing the **trade-off** between **compactness** and **sufficiency**.
- Reducing the representation gap between features and ground
 - truth endogenous states.
- > Achieving desirable sample efficiency and control performance.