A Contrario Paradigm for YOLO-based Infrared Small Target Detection

Alina CIOCARLAN^{1,2}, Sylvie LE HEGARAT-MASCLE², Sidonie LEFEBVRE¹, Arnaud WOISELLE³, Clara BARBANSON³

¹DOTA ,ONERA, Université Paris-Saclay, F-91123 Palaiseau, France ²SATIE, Université Paris-Saclay, 91405 Orsay, France ³Safran Electronics & Defense, F-91344 Massy, France *alina.ciocarlan @onera.fr*

Motivations

Context

- Surveillance: detection of aircrafts on infrared (IR) images
- Applications: military intelligence, anti-collision systems, decision-making tools

Application-related locks

- Small and rare targets with low contrast compared with the background
- Complex and textured backgrounds (clouds, vegetation, buildings...)
- Very few annotated data (thermal-IR, multispectral), high annotation costs

Proposed method

Fig. 1: Images taken from the publicly available SIRST dataset [1]. The target is drowned in cluttered and challenging backgrounds.

A contrario paradigm

- Detecting what differs from the naive modelling of the background [2]
- Usual case binary image:
 - Naive model = Bernoulli distribution
 - Detection of unexpectedly dense structures in terms of pixels with value 1

$$NFA(\kappa,\nu,p) = N_{test} \times P(|X_i| \ge \kappa) = N_{test} \sum_{i=\kappa}^{\nu} {\binom{\nu}{i}} p^i \left(1-p\right)^{\nu-i} p^i \left(1-p\right)^{\nu-i} = N_{test} \sum_{i=\kappa}^{\nu} {\binom{\nu}{i}} p^i \left(1-p\right)^{\nu-i} p^i \left(1-p\right)^{\nu-$$

- Nb. of pixels with value 1 in the tested area
- Area of the tested rectangle
- Density of points in the image
- N_{test} Nb. of tested rectangles within an image

Fig. 2: Illustration of the Gestalt laws. An abnormal grouping of points allows us to perceive objects in a scene. [3]

Differentiable integration of the a contrario criterion into YOLO [4] framework

 \mathcal{V}

p

YOLO framework

Object-level NFA head (OL-NFA)

- Fuzzy belonging coefficients
- Significance rather than NFA

 $S(\kappa,\nu,p) = -\ln(\mathrm{NFA}(\kappa,\nu,p))$

• Specific activation function

 $f_{act}(x,\eta) = 2\sigma(x+\ln\eta) - 1$

State-of-the-art results on SIRST

Method	F1	AP	Prec.	Rec.	FPS		
Segmentation n	entation networks for IRSTD						
ACM	$95.4^{\pm 1.7}$	$95.2^{\pm 3.8}$	95.1	95.8	251		
LSPM	$85.0^{\pm 2.9}$	$90.2^{\pm 0.8}$	86.6	83. <mark>5</mark>	125		
DNANet	$96.9^{\pm 0.5}$	$98.1^{\pm 1.2}$	96.6	97.2	33		
Object detection	ection methods						
YOLOv3	$96.1^{\pm 0.3}$	$97.5^{\pm 0.1}$	96.9	95.4	144		
YOLOR	$95.7^{\pm 2.2}$	$96.7^{\pm 1.1}$	96.5	94.9	136		
YOLOv7	$96.5^{\pm 1.2}$	$97.6^{\pm 0.7}$	97.2	95.9	147		
YOLOv7-tiny	$96.5^{\pm 0.6}$	$97.8^{\pm 0.4}$	96.9	96.2	256		
Ours	97.2 ^{±0.6}	98.2 ^{±0.2}	98.6	95.9	208		

Results

- Our OL-NFA head bridges the performance gap between SOTA segmentation and detection methods
- It controls the number of false alarms while mainting a high detection rate

Robustness towards few-shot training

Results for few-shot setting

Method	15-shots		25-shots	
	F1	AP	F1	AP
YOLOv7-tiny	$50.7^{\pm 7.0}$	$51.3^{\pm 7.0}$	$68.0^{\pm 6.6}$	$69.6^{\pm 8.4}$
Ours	85.0 ^{±5.0}	90.5 ^{±5.2}	89.7 ^{±4.2}	93.4 ^{±2.0}

Perspectives

- Adapt the *a contrario* block for other detection backbones [5], test other naïve models
- Limit the drop in performance observed for large object detection
- Our OL-NFA detection head significantly improves the performance in a few-shot training
- > This is because our network learns a representation of **background**
- elements rather than the targets themselves

References

- [1] Yimian Dai, et al. « Asymmetric contextual modulation for infrared small target detection ». In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 950–959, 2021.
- [2] A. Desolneux, et al. "From gestalt theory to image analysis : a probabilistic approach", vol. 34. Springer Science & Business Media, 2007.

[3] https://www.usabilis.com/definition-theorie de gestalt/

- [4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi, "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
- [5] Ciocarlan, Alina, et al. "Deep-NFA: A deep A Contrario framework for tiny object detection." Pattern Recognition (2024): 110312.

