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Abstract

In this paper, we consider the intersection of two problems in machine learning: Multi-Source Do-

main Adaptation (MSDA) and Dataset Distillation (DD). On the one hand, the first considers adapting

multiple heterogeneous labeled source domains to an unlabeled target domain. On the other hand,

the second attacks the problem of synthesizing a small summary containing all the information about

the datasets. We thus consider a new problem called MSDA-DD. To solve it, we adapt previous works

in the MSDA literature, such as Wasserstein Barycenter Transport and Dataset Dictionary Learning,

as well as DD method Distribution Matching. We thoroughly experiment with this novel problem on

four benchmarks (Caltech-Office 10, Tennessee-Eastman Process, Continuous Stirred Tank Reactor,

and Case Western Reserve University), where we show that, even with as little as 1 sample per class,

one achieves state-of-the-art adaptation performance.

Methodology

Overview

Multi-Source Domain Adaptation-Dataset Distillation. We search for a small, synthetic, labeled sum-

mary that is close in distribution to the target domain.

Probability Metrics

(a) Optimal Transport [1] (b) Maximum Mean Discrepancy [2]

We use optimal transport and the maximum mean discrepancy for comparing probability distributions,
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Proposed Methods

(a) Distribution Matching [3]
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i ,y
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D(P̂ , Q̂T ) +
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).

Synthetic samples: {x(P )
i , y

(P )
i }m

i=1
D = W2, Dc = Wc =⇒ WBT [4]

D = MMD, Dc = MMDc =⇒ MSDA-DM

(b) Dataset Dictionary Learning [5]

(P?, A?) = argmin
P ,A

W2(Q̂T , B̂T ) +
NS∑
`=1

Wc(Q̂`, B̂`).

Atoms: P = {P̂k}K
k=1,

Barycentric coordinates A = {α`}
NS+1
`=1 ,

Q̂T is compressed via B̂T = B(αT ; P).

Empirical Results

Overview
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Distribution Visualization

DaDiL and WBT produce summaries that

respect class boundaries, contrary to

MSDA-DM.

MSDA-DM based on the MMD is sensitive

to initialization.

MSDA-DM based on MMD (linear kernel)

only aligns the first-order moments.

The Wasserstein distance is a strong

candidate for dataset distillation.

DaDiL WBT MSDA-DM

Conclusionk

We perform domain adaptation and data distillation simultaneously.

We improve performance on taget domain while reducing the overall dataset size.

In the TEP benchmark we achieve state-of-the-art performance with only 0.16% of the total

amount of samples.

FutureWorks

Our work opens a novel line of research on dataset distillation and domain adaptation. For future

works we plan to use this framework for incremental transfer learning.
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