Deep Versatile Hyperspectral Reconstruction Model from a Snapshot Measurement with Arbitrary Masks

Takumi Takabe (Yamaguchi University), Xian-Hua Han (Rikkyo University, Japan), Yen-Wei Chen (Ritsumeikan University, Japan) **RIKKYO A**

Research Background and Purpose:

RGB Image

Abundance Spectral information ->Benefiting for many fields

- Remote Sensing
- Agriculture

3 spectral bands only

Medical diagnosis More than tens of spectra ·

Hyperspectral Imaging: Require to capture 3D cube

2D detector: Employ scanning method

Challenge to capture 3D HSI in dynamic world

Coded aperture snapshot spectral imaging (CASSI) Concat in Channel Dim Down-2 Leverage Compressive theory to obtain a 2D Element summation The detailed structures snapshot measurement for 3D HSI cube $out \in \mathbb{R}^{H \times W \times C}$ of MSMM and Strans **Detection Phase** Shift Coded Modulated Measurement Disperser Spectral Conv Cube Aperture cube Linear Left: Mask Structure Conv x2 Spectral **Modeling Module** Attention Sigmoid Attention Q ${old K}$ Dispersion Modulation Integration **Right: Spectral** Inversed Shift $oldsymbol{V} \in \mathbb{R}^{HW imes C}$ $\boldsymbol{K} \in \mathbb{R}^{HW imes C^{A}}$ $\hat{\boldsymbol{Q}} \in \mathbb{R}^{HW imes C}$ **Transformer Block Reconstruction phase: Inverse problem** Linear Linear Linear $oldsymbol{X} \in \mathbb{R}^{H imes W imes C}$ Mask Attention **Reconstruct the underlying 3D HS images from the Experimental Results:** measure snapshot Challenge task with high compressive rate **Datasets: CAVE (32 HS Images)** 512x512x31 HSI reconstruction performance: Bottleneck of the CASSI 20 training images; 12 test images Require reconstruction in the CASSI sensor: High-speed Harvard (50 HS Images) 1042x1392x31 40 training images; 10 test images **Related Work** Sensing masks: randomly generated binary matrix in a Bernoulli distribution with p = 0.5

The spectral sensitivity function of HSI

camera (Narrow spectral bands)

Paper ID: #1717

1000

CASSP

2024 KOREA

Model-based methods: Formulate the detection process as

Mathematical Model **Optimization on the** $\hat{x} = \operatorname{argmin} \frac{1}{2} \parallel y - \Phi x \parallel_2^2 + \tau R(x)$ objective function

Regularization term

- Optimization: Time-consuming
- Empirical prior: insufficient to capture diverse structure of HSI

Existing deep learning models

- Compared with model-based methods
- Better reconstruction performance
- Faster inference time
 - Assume
- Fixed and small size sensing mask in detection phase \rightarrow Low generalization
- Sensing mask (coded Aperture) in detection phase
- Different optical designs in the coded aperture
- Different imaging conditions
 - \rightarrow Diverse sensing masks

Comparison with SoTA methods

Dataset	Metrics	HS [19]	HRNet [20]	DSSP [21]	HMNet [22]	StransNet	Our
CAVE	PSNR ↑	25.93	25.82	28.15	27.88	28.97	29.94
	SSIM↑	0.790	0.829	0.851	0.864	0.879	0.903
	SAM↓	0.260	0.305	0.201	0.199	0.188	0.163
Harvard	PSNR ↑	34.93	36.04	36.77	36.81	37.05	39.31
	SSIM↑	0.916	0.938	0.934	0.947	0.938	0.955
	SAM↓	0.120	0.166	0.099	0.119	0.100	0.091

Visualization Results

Proposed Method: Versatile model

Flexible HSI reconstruction for various masks: High generalization

Detection phase Employ diverse masks Synthesizing the training samples with different distribution

Backbone architecture: Unet-like Spectral Transformer

→Capture the long-range dependence among spectra

Ablation Study: Verify the effectiveness of different proposed components **Training data generation:** using random masks (RM) or a fixed mask (FM)

Test snapshot measurements: generated using random masks (RM) or

the fixed mask (FM)

		Test with FM			Test with RM			
Training with FM		\checkmark	\checkmark		\checkmark		\checkmark	
Training with RM				\checkmark		\checkmark		\checkmark
MSMM			\checkmark	\checkmark			\checkmark	\checkmark
CAVE	PSNR ↑	28.97	29.94	29.94	25.79	28.54	29.33	29.94
	SSIM↑	0.879	0.896	0.903	0.816	0.879	0.883	0.903
	SAM↓	0.188	0.159	0.163	0.238	0.202	0.170	0.163
Harvard	PSNR ↑	37.05	39.27	39.28	30.32	37.77	38.94	39.31
	SSIM↑	0.938	0.955	0.955	0.836	0.947	0.953	0.955
	SAM↓	0.100	0.084	0.091	0.174	0.094	0.087	0.091