

Hyperspectral Image Reconstruction using Hierarchical Neural Architecture Search from a Snapshot Image

Xian-Hua Han (Rikkyo University, Japan), Huiyan Jiang (Northeastern University, China), Yen-Wei Chen (Ritsumeikan University, Japan) 2024 korea

Paper ID: #6267

Research Background and Purpose:

Hyperspectral Image

Abundance Spectral information

camera (Narrow spectral bands)

- ->Benefiting for many fields
- Remote Sensing
- Agriculture
- Medical diagnosis More than tens of spectra •

Hyperspectral Imaging: Aims to capture 3D cube

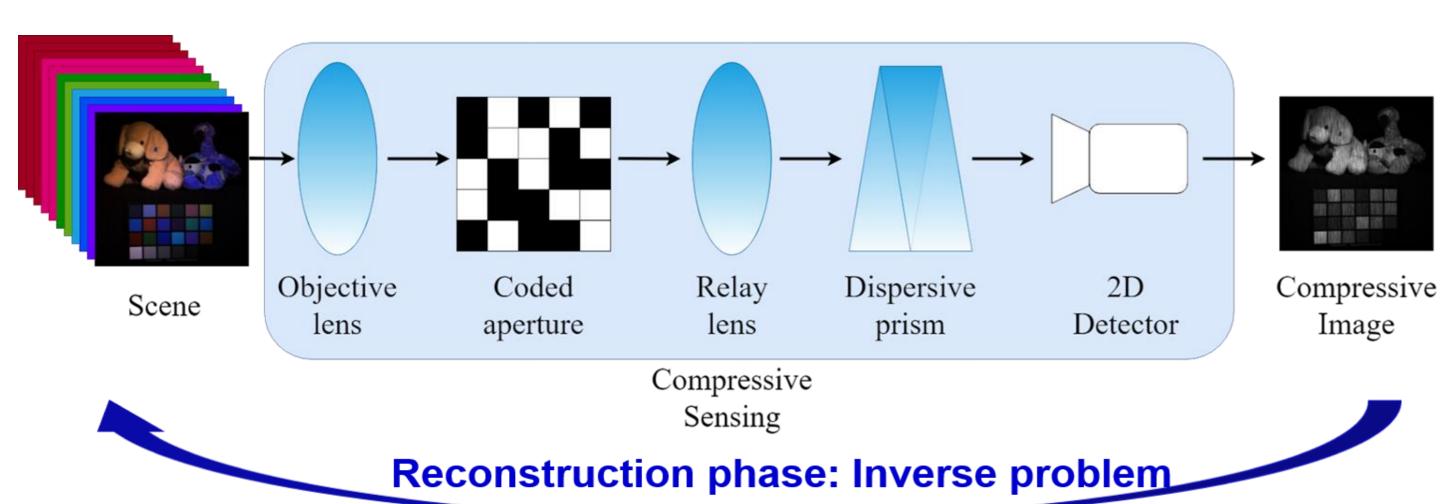
2D detector: Conventional scanning method

Challenge to capture 3D HSI in dynamic world

Coded aperture snapshot spectral imaging (CASSI)

Detect a 2D snapshot measurement using compressive theory

CASSI: Detection Phase

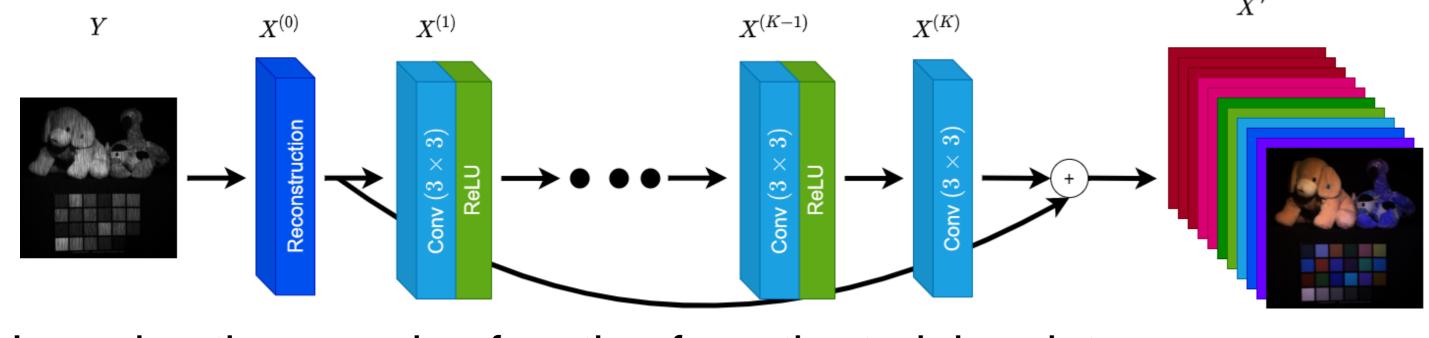


Reconstruct the underlying 3D HS images from the measure snapshot

- Challenge task with high compressive rate
- HSI reconstruction performance: Bottleneck of the CASSI
- Require reconstruction in the CASSI sensor: High-speed

Related Work: Deep learning-based methods

Trainable reconstruction model using CNN



Learning the mapping function from the training data

→ Fast and high restoration performance after training

Current effort: Manually design network architecture according to the insight of **natural image vision**

Deep and complicate network architecture: Massive-computational models

→ Difficult for being embedding in the real imaging systems

Proposed Method: NAS for architecture design

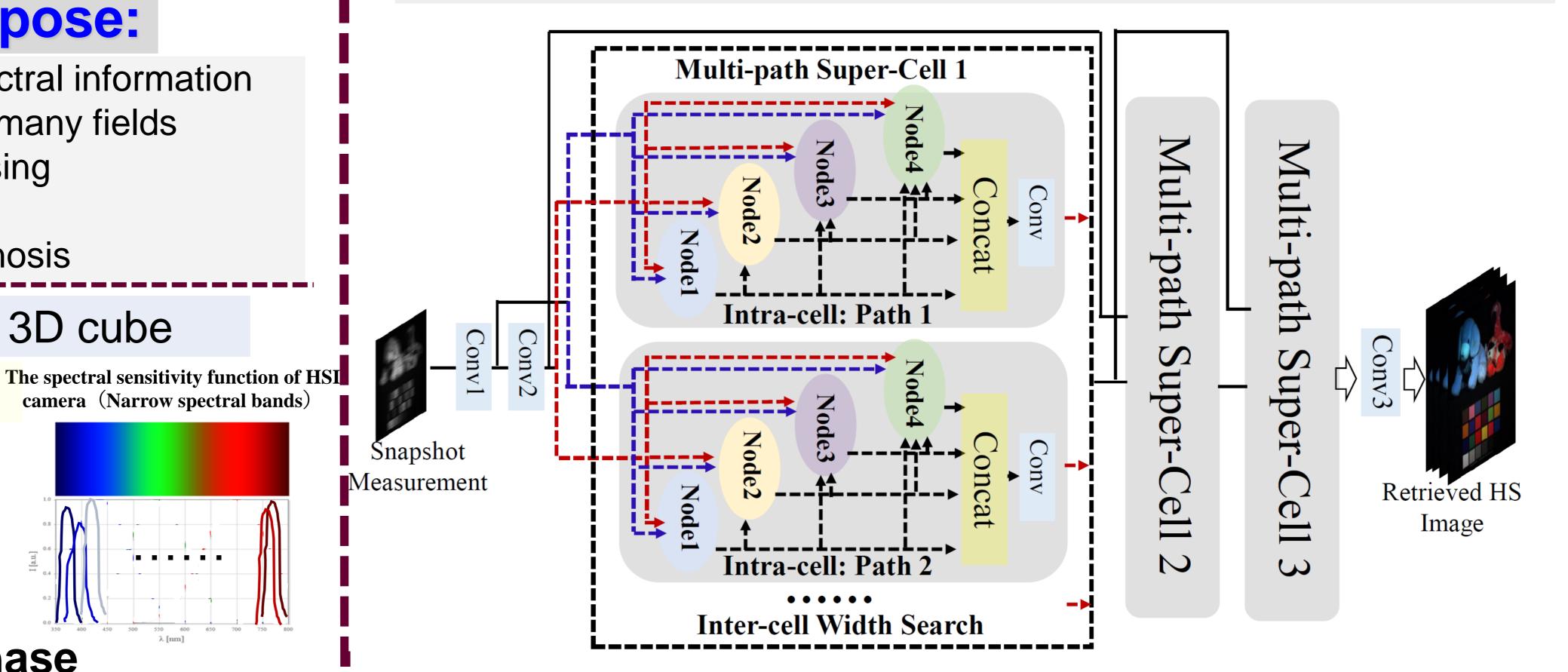
Leverage network architecture search:

->Automatically design effective and efficient network architectures for HSI reconstruction

Main Efforts

- 1) Prepare optional operations (cells) with adaptive receptive field Dilate/deformable conv layers
- 2) A flexible hierarchical search space
 - A. Intra-cell architecture search: Optional operations
 - (1) 3×3 convolution (conv), (2) separable convolution (sep),
 - (3) 3×3 dilated convolution with rate of 2 (dil),
 - (4) Deformable convolution (def), (5) Mix convolution (mix)
 - (6) skip connection (skip).
 - B. Inter-cell width search: Adaptively select optimal path
- 3) Share cells within different levels of features Early stopping technique
 - → Computational and memory efficient NAS
 - 4) Gradient-based search strategy
 - → Efficient learning

The conceptual scheme of the proposed architecture search



- Two initial convolution layers for shallow feature extraction
- three multi-path super-cells with hierarchical search space of various operations (nodes)
- 3) A reconstruction module with the convolution
 - Search the suitable operation or connections of intra-cell
 - ◆ Find the adaptive path width of inter-cell

Experimental Results:

CAVE (32 HS Images) 512x512x31 **Datasets:**

16 training images; 4 Val images; 12 test images

Harvard (50 HS Images) 1042x1392x31

22 training images; 8 Val images; 20 test images

Validation images: decide the search epoch number

distribution with p = 0.5

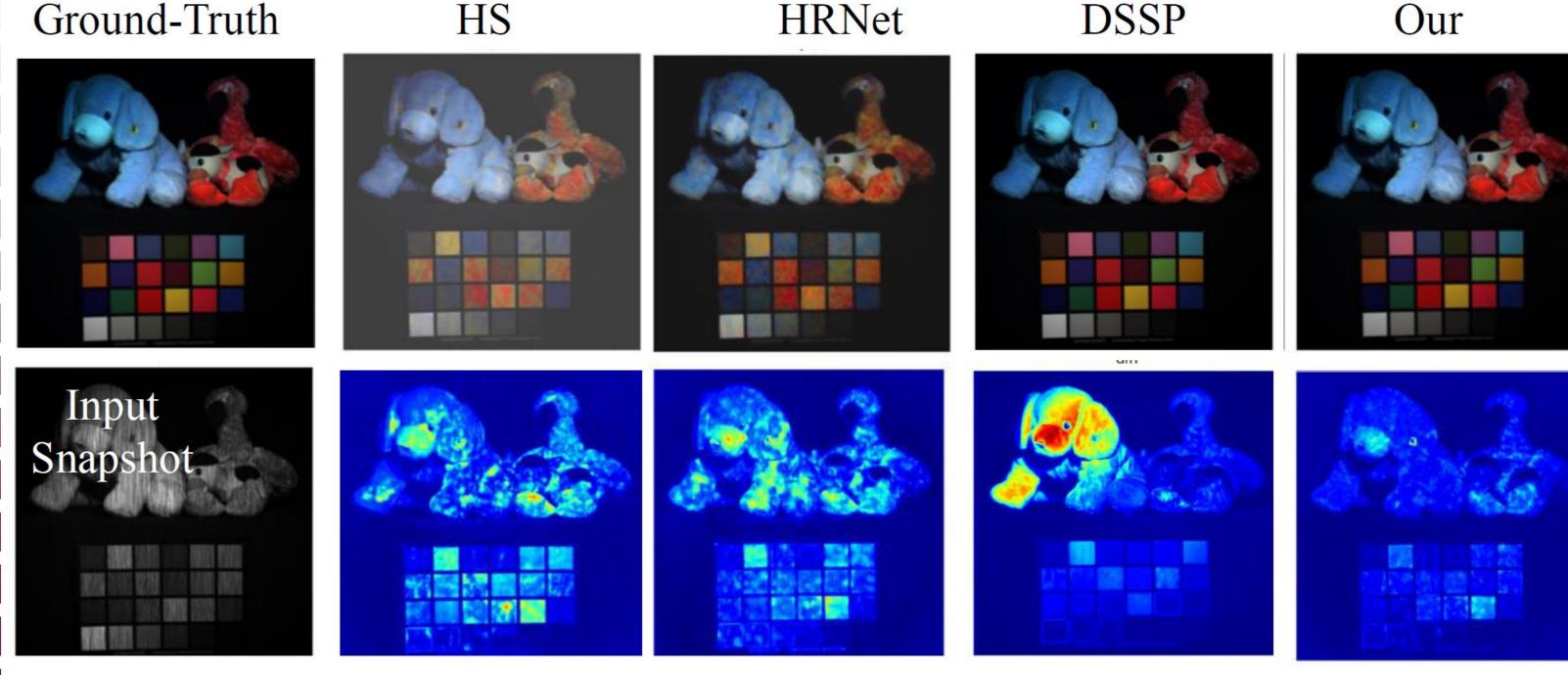
Comparison with SoTA methods

Dataset	Metrics	HS [16]	HRNet [19]	DSSP [20]	HMNet [21]	our
	PSNR↑	23.22	25.82	24.82	25.88	25.98
	SSIM↑	0.720	0.829	0.807	0.814	0.853
CAVE	SAM↓	0.475	0.305	0.392	0.259	0.299
	Para. (MB) ↓	312	581	341	167	138
	GMACS↓	86.9	152.1	89.4	65.4	28.3
	PSNR↑	34.93	36.04	36.77	36.81	37.06
Harvard	SSIM↑	0.916	0.938	0.934	0.947	0.955
	SAM↓	0.120	0.166	0.099	0.119	0.109
	Para. (MB) ↓	312	581	341	167	188
	GMACS↓	86.9	152.1	89.4	65.4	47.8

Sensing masks: randomly generated binary matrix in a Bernoulli

Visualization Results

Ablation Study:



1) Optional layers in IAS

Set1 (conv, sep, dil, def, skip)

Set2 (conv sep, mix, skip) Set3 (conv, sep, dil, skip),

2) With or Without inter-cell width search (IWS)

IAS	Set1	Set1	set2	set3
IWS				
PSNR [↑]	25.47	25.98	25.04	25.19
SSIM [†]	0.829	0.853	0.803	0.826
SAM↓	0.305	0.299	0.323	0.308