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Let 𝑞 be an EBM representing MNIST digits “1” and 𝑝 be 

a mixture of 97% 𝑞 and 3% true digits “1”. Neural Stein 

critics are trained using 2,000 samples from 𝑝. In training, 

staged-regularized critics more rapidly yield high-power 

discriminators compared to fixed-𝜆 regularization.

Let 𝑞 be a model of data distribution 𝑝 of the form:

𝑞 𝑥 = 𝑍−1 ⋅ exp −𝐸𝜙 𝑥 ,

where 𝑍 is a normalizing constant that is not required to 

compute the score 𝐬𝑞 = −∇𝐸𝜙 𝑥 . Stein critics can be 

used to assess the local discrepancy between 𝑝 and 𝑞:

𝑤 𝑥 = 𝑇𝑞𝐟 𝑥, 𝜃 .

Let ഥ𝑤𝑝 and 𝜎 𝑤𝑝  be the mean and standard deviation of 

𝑤 𝑥  computed on 𝑥~𝑝, and likewise 𝜎 𝑤𝑞  for 𝑥~𝑞 . 

Metric 𝑃 reflects the discrepancy between distributions 𝑝 

and 𝑞 in terms of test statistic 𝑇:

𝑃 =
ഥ𝑤𝑝

𝜎 𝑤𝑝 + 𝜎 𝑤𝑞

.

The Stein discrepancy provides a means to assess the 

Goodness-of-Fit (GoF) of statistical models. The Stein 

discrepancy only requires the model score function, 

making it naturally applicable to energy-based models 

(EBMs), which are described only up to a normalizing 

constant. Neural network stein critics trained using a 

novel staged regularization scheme are used to 

compute the Stein discrepancy. The resultant critics 

localize the discrepancy between distributions 

induced by generative models of image data.

The Stein discrepancy between distributions 𝑝  and 

𝑞 evaluated at critic function 𝐟 ∈ ℱ is:

SD 𝐟 ≔ 𝔼𝑥∼𝑝𝐬𝑞 𝑥 ⋅ 𝐟 𝑥 + ∇ ⋅ 𝐟 𝑥 = 𝔼𝑥~𝑝𝑇𝑞𝐟 𝑥 ,

where 𝐬𝑞 = ∇𝑞/𝑞 is the score of 𝑞. The Stein discrepancy 

over function class ℱ is

SDℱ 𝑝, 𝑞 ≔ sup
𝐟∈ℱ

SD 𝐟 .

If ℱ = 𝐿2, the spaced of squared-integrable vector fields, 

then 𝐟∗ = 𝐬𝑞 − 𝐬𝑝. The optimal neural Stein critic is related 

to the 𝐟 which minimizes the regularized functional:

ℒ𝜆 𝐟 ≔ −SD 𝐟 +
𝜆

2
𝔼𝑥∼𝑝 𝐟 𝑥 2,

which is minimal at 𝐟𝜆
∗ ≔ 𝜆−1𝐟∗. A neural network Stein 

critic 𝐟 ⋅, 𝜃  can be trained to minimize ℒ𝜆.

Large 𝜆 early in training can be approximated by neural 

tangent kernel (NTK) theory: 𝐟 ⋅, 𝜃  reaches its optimum 

in ~1/𝜆 time. Weaker 𝜆 may be necessary to go beyond 

the kernel learning regime. Log-linear staging is used:

Λ 𝐵𝑖; 𝜆init, 𝜆term, 𝛽 = max 𝜆init ⋅ 𝛽𝑖 , 𝜆term .

Let 𝛽 ∈ 0,1  be the decay rate, 𝐵 be the staging period in 

batches, and 𝐵𝑖 = 𝑖 ⋅ 𝐵.

GOODNESS-OF-FIT

GoF assesses 𝐻0: 𝑝 = 𝑞 versus 𝐻1: 𝑝 ≠ 𝑞 given a model 𝑞 

and 𝑋 = {𝑥𝑖} drawn from 𝑝. A test statistic 𝑇 𝑋  is used to 

reject 𝐻0 if 𝑇 > 𝑡thresh. Given neural Stein critic 𝐟 ⋅, 𝜃 :

𝑇 ≔
1

𝑛GoF


𝑖=1

𝑛GoF

𝑇𝑞𝐟 𝑥 ,

which is an estimator of the Stein discrepancy.

The staged-regularized critic is applied to a validation set 

to yield 𝑤(𝑥) for 𝑥~𝑝. In a t-SNE embedding of this set, 

the true MNIST digits are highlighted in red on the left. On 

the right, the value of 𝑤 𝑥  is larger for true MNIST digits.

The critic evaluated at anomalous points reveals the 

ability of neural Stein critics to localize disparity.

CONCLUSION
Staged regularization results in more efficient learning 

of neural Stein critics which can localize discrepancy in 

distributions represented by generative models.
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