

Congestion-aware Distributed Task Offloading in Wireless Multi-hop Networks using Graph Neural Networks

Zhongyuan Zhao*, Jake Perazzone[†], Gunjan Verma[†], Santiago Segarra*

*Rice University, USA

+ US Army's DEVCOM Army Research Laboratory, USA

Seoul, Korea, April 14-19, 2024

Distributed task offloading

- Wireless multihop networks
 - Clients: data source, resource-constrained
 - Relay: well-connected, no computing
 - Servers
- Task: a steady flow of similar jobs
 - Same job type (object detection)
 - Same job data size (a video frame)
- Client decision-making
 - Location: which server to do computing
 - Routing: path to the selected server
- Multiple clients make parallel decisions in a batch
 - Streaming based on per-task decisions
 - Minimize average job response time

RICE UNIVERSITY

Baseline: context-agnostic distributed offloading

Step 1: clients send out probing messages

$$\delta = \frac{1}{r}$$

Step 2: clients send **task flows** via "the shortest path" to the virtual sink

Minimize task response time

Consider per-link unit delay as edge weight

What could go wrong in wireless networks?

Link capacity changes once the streaming begins, depending on path selection & flow rate assignment

Queueing networks with interference constraints

probing messages are **short-lived** flows

ICASSP April 18, 2024

Links 13, 23, 35 **conflict** with each other, since node 3 has only one radio interface

Alternative decision frameworks

- Distributed greedy decision
 - Shortest path
 - Low communication overhead
 - Congestion/collision
- Centralized scheduler
 - High communication overhead
 - Single point of failure
- Peer coordination between clients
 - Difficult for large networks
 - High communication overhead

Our solution: keep shortest path decision, change *edge weights*

٠

•

2024 KOREA

2024 KOREA

Demands

Our solutions: graph modeling

RICE UNIVERSITY

April 18, 2024

2024 KOREA

Extended graph

9

RICE UNIVERSITY

2024 KOREA

Step 2: distributed offloading & routing decisions

Clients (nodes 1, 2) find their own shortest paths to the virtual sink

2024 KOREA

GCN training

10 network sizes x 10 graphs x 10 offloading instances

Numerical experiment

Random network topology and offloading instances

Local: every task is executed at its source client node GNN: distributed greedy decisions based on link/server unit delay predicted by GNN Baseline: distributed greedy decisions based on (1/link rate) – network context agnostic

If a task is congested, its execution latency > 1000 time slots

Local: all clients can execute their own tasks without congestion GNN: some tasks offloaded to remote servers without congestion, reducing average execution latency compared to the local policy Baseline: 4%~15% congestion ratio, and high average execution latency (500)

April 18, 2024

2024 KOREA

 \land

For a task NOT congested under the baseline, its execution time under local and GNN policies is longer, when everything else the same.

- GNN is still better than local policy
- Room for improvement

Conclusions & future work

- Distributed task offloading + routing \rightarrow shortest path routing
- Encode network context into edge weights
 - Graph convolutional neural networks
 - CSMA digital twin
- Mitigate congestion of concurrent flows of jobs
- Future work
 - Decision framework: iterative, probabilistic
 - Improve training approach
 - Trainable digital twin for other link schedulers
 - Evaluation on simulated queueing networks

