Gridless Parameter Estimation in Partly Calibrated Rectangular Arrays

Tianyi Liu¹, Sai Pavan Deram², Khaled Ardah³, Martin Haardt⁴, Marc E. Pfetsch⁵, Marius Pesavento¹

¹Communication Systems Group, Technical University of Darmstadt, Darmstadt, Germany ²IMDEA Networks Institute, Madrid, Spain ³Lenovo Research 5G Lab, Lenovo, Germany

 ⁴Communications Research Laboratory, Ilmenau University of Technology, Ilmenau, Germany
 ⁵Research Group Optimization, Technical University of Darmstadt, Darmstadt, Germany

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction

Shift-Invariant SPARROW (SI-SPARROW)

- Proposal of a gridless sparse formulation for direction-of-arrival (DOA) estimation in partly calibrated rectangular arrays based on shift invariances
- Development of an efficient algorithm in the alternating direction method of multipliers (ADMM) framework

Mathematical Model and Notations

- Partly calibrated rectangular array (PCRA) with fully calibrated identical subarrays
- $M = M_x \times M_y$: Total number of sensors
- $\Delta_p^x (\Delta_p^y)$: Unknown intersubarray displacement between the *p*th and the first subarrays in *x*-axis (*y*-axis)
- $\delta_l^x (\delta_l^y)$: *Known* intrasubarray displacement between the *l*th and the first sensors in *x*axis (*y*-axis)

 $M_x \times M_y$ PCRA composed of $P_x \times P_y$ subarrays of $L_x \times L_y$ sensors

- Distinct Directions-of-Arrival (DOAs) from N_{S} far-field narrowband sources with azimuth angle $\phi_i \in [-180^{\circ}, 180^{\circ})$ and elevation angle $\theta_i \in [0^{\circ}, 90^{\circ}]$ for $i = 1, ..., N_{S}$.
- Equivalent expression of DOA (ϕ_i, θ_i) in spatial frequencies (μ_i^x, μ_i^y) with

$$\mu_i^x = \pi \cos(\phi_i) \sin(\theta_i) \in [-\pi, \pi)$$
 and $\mu_i^y = \pi \sin(\phi_i) \sin(\theta_i) \in [-\pi, \pi)$

Signal Model

 $oldsymbol{Y} = oldsymbol{A}(oldsymbol{\mu}) oldsymbol{\Psi} + oldsymbol{N}$ $oldsymbol{\mu} = [\mu_1^x, \dots, \mu_{N_{\mathsf{S}}}^x, \mu_1^y, \dots, \mu_{N_{\mathsf{S}}}^y]^{\mathsf{T}}$ $\boldsymbol{Y} \in \mathbb{C}^{M \times N}$: Received signal matrix $\boldsymbol{\Psi} \in \mathbb{C}^{N_{S} \times N}$: Source signal matrix $\boldsymbol{N} \in \mathbb{C}^{M \times N}$: Sensor noise matrixN : Number of available snapshots

• Gridless relaxation of SPARROW \Longrightarrow Shift-Invariant SPARROW (SI-SPARROW) $\min_{\boldsymbol{S} \in \mathbb{D}^N_+, \boldsymbol{A} \in \mathcal{A}^K, \boldsymbol{Q} \in \mathbb{S}^M_+} M \operatorname{tr} \left((\boldsymbol{Q} + \lambda \boldsymbol{I}_M)^{-1} \widehat{\boldsymbol{R}} \right) + \operatorname{tr}(\boldsymbol{Q})$

 $\mathcal{A}^{K} = \{ \mathbf{A}(\boldsymbol{\nu}) \mid \boldsymbol{\nu} \in [-\pi, \pi]^{2K}, (\nu_{i}^{x}, \nu_{i}^{y}) \neq (\nu_{j}^{x}, \nu_{j}^{y}) \forall i, j = 1, \dots, K, i \neq j \} : \text{Array manifold with} K \text{ distinct DOAs}$

- ESPRIT-like methods performed on ${\it Q}$ to recover DOAs
- Solution approaches for SI-SPARROW:

Semidefinite Programming (SDP)	Alternating Direction Method of Multipliers (ADMM)
$ \begin{array}{l} \min_{\boldsymbol{Q} \in \mathbb{S}^{M}_{+} \cap \mathcal{T}^{M}, \boldsymbol{T} \in \mathbb{S}^{N}_{+}} & \frac{M}{N} \operatorname{tr}(\boldsymbol{T}) + \operatorname{tr}(\boldsymbol{Q}) \\ \text{s.t.} & \begin{bmatrix} \boldsymbol{T} & \boldsymbol{Y}^{H} \\ \boldsymbol{Y} & \boldsymbol{Q} + \lambda \boldsymbol{I}_{M} \succ 0 \end{bmatrix} \succeq 0 \end{array} $	$ \begin{array}{l} \displaystyle \min_{\boldsymbol{Q} \in \mathcal{T}^{M}, \boldsymbol{Z} \in \mathbb{S}^{M}} M \operatorname{tr} \left((\boldsymbol{Q} + \lambda \boldsymbol{I}_{M})^{-1} \widehat{\boldsymbol{R}} \right) + \operatorname{tr}(\boldsymbol{Q}) + \mathbb{I}_{\mathbb{S}^{M}_{+}}(\boldsymbol{Z}) \\ & \text{s.t.} \boldsymbol{Q} - \boldsymbol{Z} = \boldsymbol{0} \end{array} $

Simulation Results

• Steering matrix $A(\mu) = [a(\mu_1^x, \mu_1^y), \dots, a(\mu_{N_s}^x, \mu_{N_s}^y)] \in \mathbb{C}^{M \times N_s}$ with

 $oldsymbol{a}(\mu^x_i,\mu^y_i)=oldsymbol{a}_x(\mu^x_i)\otimesoldsymbol{a}_y(\mu^y_i)$

 $\boldsymbol{a}_{x}(\mu_{i}^{x}) = [1, \dots, \mathbf{e}^{\mathbf{j}\mu_{i}^{x}\delta_{L_{x}}^{x}}, \mathbf{e}^{\mathbf{j}\mu_{i}^{x}\Delta_{2}^{x}}, \dots, \mathbf{e}^{\mathbf{j}\mu_{i}^{x}(\Delta_{P_{x}}^{x} + \delta_{L_{x}}^{x})}]^{\mathsf{T}} \in \mathbb{C}^{M_{x}}$ $\boldsymbol{a}_{y}(\mu_{i}^{y}) = [1, \dots, \mathbf{e}^{\mathbf{j}\mu_{i}^{y}\delta_{L_{y}}^{y}}, \mathbf{e}^{\mathbf{j}\mu_{i}^{y}\Delta_{2}^{y}}, \dots, \mathbf{e}^{\mathbf{j}\mu_{i}^{y}(\Delta_{P_{y}}^{y} + \delta_{L_{y}}^{y})}]^{\mathsf{T}} \in \mathbb{C}^{M_{y}}$

• •

0 0

 \sim $K_2^x \sim$ K_3^x

000

• • • • • •

0 0

Shift Invariances in the PCRA

Shift subarrays:

 $(\boldsymbol{J}_{p}^{x})^{\mathsf{T}}\boldsymbol{A}(\boldsymbol{\mu}) = (\boldsymbol{J}_{1}^{x})^{\mathsf{T}}\boldsymbol{A}(\boldsymbol{\mu})\boldsymbol{\Phi}(\Delta_{p}^{x}\boldsymbol{\mu}^{x}), \quad p=2,\ldots,P_{x}$ $(\boldsymbol{J}_{p}^{y})^{\mathsf{T}}\boldsymbol{A}(\boldsymbol{\mu}) = (\boldsymbol{J}_{1}^{y})^{\mathsf{T}}\boldsymbol{A}(\boldsymbol{\mu})\boldsymbol{\Phi}(\Delta_{p}^{y}\boldsymbol{\mu}^{y}), \quad p=2,\ldots,P_{y}$ Shift sensors within a subarray:

•
$$\mu^x = [\mu_1^x, \dots, \mu_{N_s}^x]^T$$
 and $\mu^y = [\mu_1^y, \dots, \mu_{N_s}^y]^T$

• $\Phi(\boldsymbol{x}) = \text{Diag}(e^{jx_1}, \dots, e^{jx_N}) \in \mathbb{C}^{N \times N}$ for $\boldsymbol{x} \in \mathbb{R}^N$

Conventional Approach

ESPRIT-like methods performed on the sample covariance matrix $\widehat{R} = YY^{H}/N$ to recover the DOAs based on the shift invariances involving the known intrasubarray displacements δ_{l}^{x} and δ_{l}^{y} [HN98]

Grid-Based Sparse Formulation for Fully Calibrated Arrays

- Sample the field-of-view (FOV) in $K \gg N_S$ directions with spatial frequencies $\boldsymbol{\nu} = [\nu_1^x, \dots, \nu_K^x, \nu_1^y, \dots, \nu_K^y]^T$
- On-grid assumption: $\{(\mu_i^x, \mu_i^y)\}_{i=1}^{N_s} \subset \{(\nu_k^x, \nu_k^y)\}_{k=1}^K$

- SDP problems solved by MOSEK solver
- PCRA composed of 2×2 uniform rectangular subarrays of 4×2 sensors
- Correlated sources with correlation coefficient 0.99
- Comparison methods: Multi-Invariance Multidimensional ESPRIT (MI-MD-ESPRIT) and Multidimensional Unitary ESPRIT (MD-Unitary-ESPRIT) performed on the sample covariance matrix

Sparse signal model

 $oldsymbol{Y} = oldsymbol{A}(oldsymbol{
u})oldsymbol{X} + oldsymbol{N}$

 $X \in \mathbb{C}^{K \times N}$: Row-sparse representation of Ψ $A(\nu) \in \mathbb{C}^{M \times K}$: Steering matrix for sampled directions ν

• $\ell_{2,1}$ -mixed-norm minimization

 $\widehat{\boldsymbol{X}} = \underset{\boldsymbol{X} \in \mathbb{C}^{K \times N}}{\operatorname{argmin}} \quad \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{A}(\boldsymbol{\nu})\boldsymbol{X}\|_{\mathsf{F}}^{2} + \lambda \sqrt{N} \|\boldsymbol{X}\|_{2,1}$ $\|\boldsymbol{X}\|_{2,1} = \sum_{k=1}^{K} \|\boldsymbol{x}_{k}\|_{2} \text{ for } \boldsymbol{X} = [\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{K}]^{\mathsf{T}}$

- $\lambda > 0$: Regularization parameter
- SPARROW reformulation [SPP18]

 $\widehat{\boldsymbol{S}} = \underset{\boldsymbol{S} \in \mathbb{D}_{+}^{K}}{\operatorname{argmin}} \quad \operatorname{tr} \left((\boldsymbol{A}(\boldsymbol{\nu}) \boldsymbol{S} \boldsymbol{A}(\boldsymbol{\nu})^{\mathsf{H}} + \lambda \boldsymbol{I}_{M})^{-1} \widehat{\boldsymbol{R}} \right) + \operatorname{tr}(\boldsymbol{S})$

 \mathbb{D}^K_+ : Set of $K \times K$ nonnegative diagonal matrices

 $\widehat{oldsymbol{S}} = rac{1}{\sqrt{N}} \operatorname{Diag}(\|\widehat{oldsymbol{x}}_1\|_2, \dots, \|\widehat{oldsymbol{x}}_K\|_2)$

References

[HN98] M. Haardt and J. A. Nossek. Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems. *IEEE Trans. Signal Process.*, 46(1):161–169, 1998.

[SPP18] Christian Steffens, Marius Pesavento, and Marc E. Pfetsch. A compact formulation for the $\ell_{2,1}$ mixednorm minimization problem. *IEEE Trans. Signal Process.*, 66(6):1483–1497, March 2018.

