

WFTNet: Exploiting Global and Local Periodicity in Long-term Time-Series Forecasting

Peiyuan Liu^{1,2,4}, Beiliang Wu^{1,4}, Naiqi Li², Tao Dai^{1,2}, Fengmao Lei³, Jigang Bao², Yong Jiang², Shu-tao Xia²

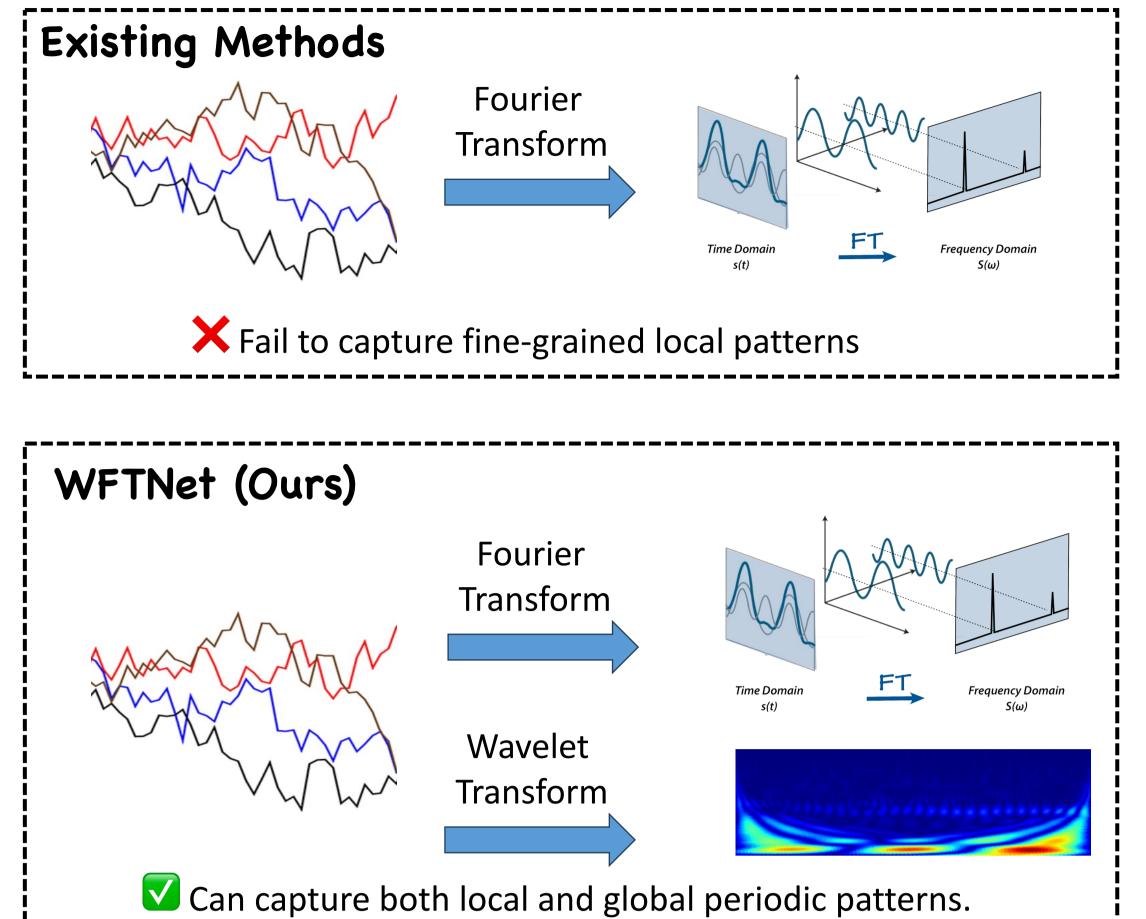
1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

2. Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

3. Ping An Bank Co., Ltd., Shenzhen, China 4. WeBank Institute of Financial Technology, Shenzhen University, Shenzhen, China

1. MOTIVATION

(1) Inadequacy in Existing Time Series Forecasting Methods:


Current models, mainly relying on Fourier transforms, fail to capture

local periodicity, essential for accurate long-term forecasting.

(2) Need for Integrated Global and Local Periodic Analysis

A gap in existing methods: the necessity to combine the global perspective

of Fourier transform with the local insight of wavelet transform for comprehensive time series analysis.

(3) Innovation with WFTNet:

Introduction of Wavelet-Fourier Transform Network (WFTNet) incorporating both Fourier and wavelet transforms, along with a unique Periodicity-Weighted **Coefficient (PWC)**, to significantly enhance long-term time series forecasting accuracy.

2. RELATED WORK

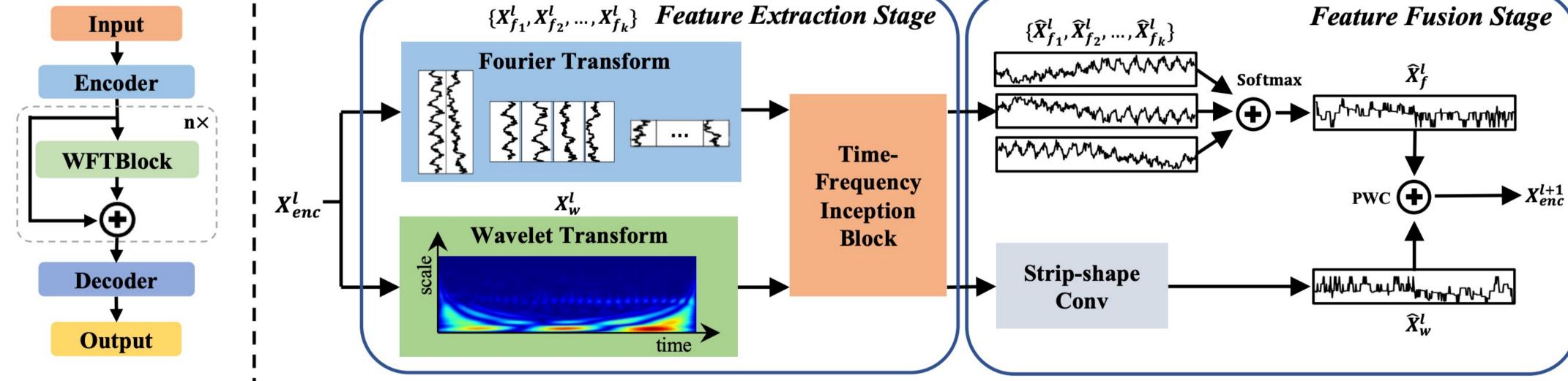
CNN-based and Transformer-based Forecasting method

- **CNN** is good at modeling local features. \bullet
- **Transformer** has the ability to capture long-term dependencies.

Frequency Enhanced Forecasting Model

- **FEDformer** falls short of fully exploiting periodic patterns in the signal lacksquare
- **TimesNet** is based on Fourier transform, and thus only captures the global frequency of the entire time series and ignores local frequency variations.

3. PROPOSED APPROACH


		1
		- T

CNN-based	Transformer-based					
TimesNet*, MICN	Autoformer, FEDformer*, Informer, ETSformer					
* manager frage under an hand manth ad						

* means frequency enhanced method

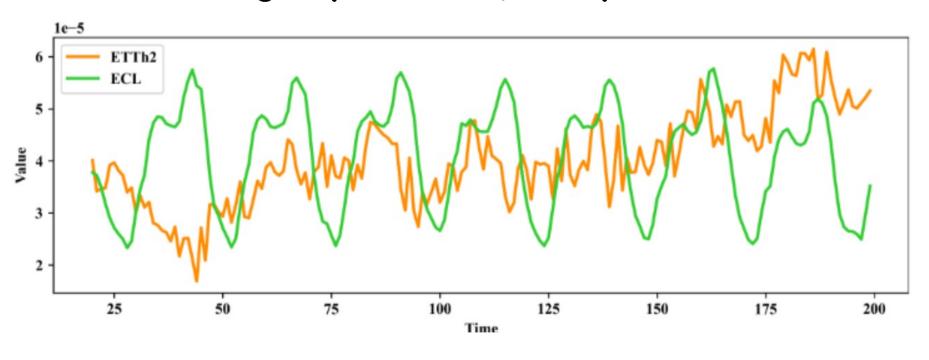
- Employs several WFTBlocks in a residual way
- Each WFTBlock use Fourier and wavelet transform to capture global and local information.
- Periodicity-Weighted Coefficient (PWC) adaptively balances global and local information.

4. EXPERIMENTS

Experiment settings

constraints.

Dataset: Electricity Transformer Temperature (ETTh1, ETTh2, ETTm1, ETTm2), Traffic, ECL, and Weather.


Overall architecture of WFTNet (left) and details of WFTBlock (right). The encoder and decoder manage input normalization, embedding, and output

projection. WFTBlocks transform the 1D time series into 2D representations using FFT for global periodic patterns and CWT for local features.

- Baseline: TimesNet, ETSformer, DLinear, FEDformer, Autoformer.
- Setups: look-back window length is set to 96 for all baselines. Prediction length is set to {96, 192, 336, 720}.
- Metrics: Mean Square Error (MSE) and Mean Absolution Error (MAE).

Models V		WF	WFTNet		TimesNet [11]		ETSformer [8]		DLinear [10]		FEDformer [7]		Autoformer [5]	
Me	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ECL	96	0.164	0.267	0.167	0.271	0.187	0.304	0.197	0.282	0.193	0.308	0.201	0.317	
	192	0.181	0.282	<u>0.187</u>	0.290	0.199	0.315	0.196	0.285	0.201	0.315	0.222	0.334	
	336	0.194	0.295	0.202	0.303	0.212	0.329	0.209	0.301	0.214	0.329	0.231	0.338	
	720	<u>0.230</u>	0.325	0.220	0.318	0.233	0.345	0.265	0.360	0.246	0.355	0.254	0.361	
Traffic	96	0.594	0.316	0.590	0.314	0.607	0.392	0.650	0.396	0.587	0.366	0.613	0.388	
	192	0.624	0.332	0.616	0.322	0.621	0.399	0.598	0.370	0.604	0.373	0.616	0.382	
	336	0.631	0.339	0.634	0.339	0.622	0.396	0.605	0.373	0.621	0.383	0.622	0.337	
	720	0.664	0.360	0.659	0.349	0.632	0.396	0.645	0.394	0.626	0.355	0.660	0.408	
Weather	96	0.161	0.210	0.169	0.219	0.197	0.281	0.196	0.255	0.217	0.296	0.266	0.336	
	192	0.211	0.254	0.226	0.266	0.237	0.312	0.237	0.312	0.276	0.336	0.307	0.367	
	336	0.271	0.296	0.281	0.303	0.298	0.353	0.283	0.335	0.339	0.380	0.359	0.395	
	720	0.347	<u>0.346</u>	0.357	0.353	0.352	0.288	0.345	0.381	0.403	0.428	0.419	0.428	
ETT*	96	0.323	0.365	0.332	0.369	0.340	0.391	0.333	0.387	0.358	0.397	0.346	0.388	
	192	<u>0.403</u>	0.409	0.396	<u>0.410</u>	0.430	0.439	0.477	0.476	0.429	0.439	0.456	0.452	
	336	0.427	0.433	<u>0.446</u>	<u>0.447</u>	0.485	0.479	0.594	0.541	0.496	0.487	0.482	0.486	
	720	0.430	0.445	<u>0.434</u>	<u>0.448</u>	0.500	0.497	0.831	0.657	0.463	0.474	0.515	0.511	
1^{st} Count 19		9	(5	1		3		2		1			
* ETT means the ETTh2. Experiments were also conducted on ETTm1, ETTm2, and ETTh1 datasets, but are omitted here due to space														

ECL has stronger periodicity compared with ETTh2

Significance of PWC (Ablation Study)

Mo	Models		ГNet	Fourie	r-Only	Wavelet-Only		
Metric		MSE	MSE MAE		MAE	MSE	MAE	
	96	0.164	0.267	0.168	0.273	0.196	0.301	
Ţ	192	0.181	0.282	<u>0.187</u>	0.290	0.209	0.309	
ECL	336	0.194	0.295	0.201	0.300	0.217	0.318	
	720	0.230	0.325	0.218	0.320	0.247	0.347	
	96	0.323	0.365	0.332	0.369	0.329	0.362	
ETTh2	192	0.403	0.409	0.406	0.412	0.404	<u>0.410</u>	
	336	0.427	0.433	0.446	0.447	0.433	0.437	
	720	<u>0.430</u>	<u>0.445</u>	0.434	0.448	0.421	0.439	

- Fourier-Only is advantageous for the ECL, which has the stronger periodicity.
- Wavelet-Only proves more beneficial for the less periodic ETTh2 datasets.
- WFTNet, by leveraging PWC for dynamic feature balancing, consistently outperforms these specialized branches.