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Conclusion Results
We propose a regulariza- Variation of regularization between o = 0 (only ILS-estimated targets) and « = 1 (only measure-
tion prior for wear predic- ments).
tion of refractory material in Blending intermediate target estimates into the loss function clearly improves prediction accuracy.

metallurgical vessels.
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overall measurements. Linear Regression (LR): Linear regression with uniform intermediate targets

Bootstrapping DNNs with Iterative Least Squares (ILS): Linear regression with iteratively estimated intermediate targets
estimates of intermedi- Deep Neural Network (DNN) Architectures (ILS bootstrapped): LSTM, 1D CNN, 2D CNN

ate targets is beneficial for
small and noisy data sets.

Table 1: RMSE performance in [mm] and standard deviation for the DNN models.

LSTM 1D CNN 2D CNN LS IR
Our proposed regularized Metal zone 1733+ 017 1756020  17.40-007  19.48  22.66
i[r)n'\g)':ls’vzrﬁg]f gs;:agﬁal\ll 3 Slag zone 2454 +017  23.25:022 2466-007 2634  31.07
trained solely with MSE. Heart 34.65 + 0.14 35.01 £ 0.20 34.40 + 0.30 37.65 42.68
Inlet 2224 : 017  2321+026 2261063 2439 2902
Outlet 2907 +0.14  29.84-010 2915+041 3211  34.33
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