
Variational Mode Decomposition (VMD) [1] is a well-known optimization-based signal decomposition method using constant-bandwidth
Wiener filters to extract narrowband components from the input signal. However, limitations include constant bandwidth and the need for a
predefined constituent count. We propose the Dynamic Bandwidth VMD (DB-VMD) to address the constant bandwidth limitation by
enhancing the optimization problem with an additional constraint. Experiments on synthetic signals demonstrate DB-VMD's noise robustness
and adaptability compared to VMD.
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DYNAMIC BANDWIDTH VARIATIONAL MODE DECOMPOSITION

Variational Mode Decomposition (VMD) breaks down an input 
signal into 𝐾 narrowband oscillatory modes. VMD formulates an 
optimization problem that aims to minimize the modes’ collective 
bandwidth subject to the reconstruction constraint. The quadratic 
penalty and the Lagrange multipliers are used and a parameter 𝜶 is 
introduced to tune the importance of minimum collective 
bandwidth. The Lagrangian is obtained
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and the ADMM [2] is used to derive the algorithm of VMD. That is 
equivalent to introducing constant-bandwidth bandpass filters to 
the input’s spectrum and updating their central frequencies.

Background 

We propose the Dynamic Bandwidth Variational Mode 
Decomposition (DB-VMD) to generalize VMD by imposing an 
additional constraint to the optimization problem which bounds the 
collective bandwidth between two scalar parameters. The Lagrange 
multipliers are used to enforce the new constraint. The Lagrangian is 
obtained and the parameter 𝜶 is replaced by a function of the new 
Lagrange multipliers.
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ADMM is also employed here to derive the DB-VMD algorithm. This 
process is equivalent to introducing dynamic-bandwidth bandpass 
filters to the input’s spectrum and updating their central frequencies. 

Proposed method

Experimental results
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Noise Robustness
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Dynamic Bandwidth VMD

• generalizes VMD

• is more adaptive and 
noise resilient than VMD

• paves the way for 
applications with noise
contaminated signals.

Key takeaways
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• Address the need for 
constituent count

• Extend to multivariate 
signal analysis

• Bound individual modes’ 
bandwidth

Future work
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