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To propose and investigate an open-set approach

for deepfake detection in images.
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Chengi Kong, Baoliang Chen, Haoliang Li, Shigi Wang, Anderson Rocha, and Sam Kwong, “Detect and
locate: Exposing face manipulation by semantic-and noise-level telltales,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 1741-1756, 2022
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EXPERIMENTS AND RESULTS

1 — Baseline feature extractor and no Fine Tuning

Features
Extractor

Fine
Tuning

Clustering

@_}X_}@ @_} Open-Set
, (V) Training
BASELINE
Dataset | Classifier  Clusters ACC AUC EER
OCSVM 1 0.586 0.636 0.395
DFD IF 1 0.629 0.647 0.380
EVM 2 0.553 0.590 0.313
OCSVM 1 0.775 0.852  0.228
FF C40 IF 1 0.785 0.872 0.194
EVM 2 0.593 0.602 0.536
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BASELINE
Dataset | Classifier dim clusters | ACC ~AUC  EER
OCSVM 256 2 0.544 0580 0.445
DFD IF 128 3 0.542 0561 0.449
EVM 96 4 0.500 0.486  0.969
OCSVM 16 3 0.560  0.750  0.068
FF C40 IF 32 3 0.559  0.689  0.048
EVM 32 3 0.631 0.675 0.028
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| (%) Training
BASELINE

Dataset | Classifier | ACC AUC EER
OCSVM | 0554 0.554 0.559
DFD IF 0.601 0.630 0.402

EVM 0.450 0430 0.800
OCSVM | 0.764 0.861 0.193
FF C40 IF 0.788 0.865 0.207
EVM 0.531 0.558 0.901
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4 — Feature extractor with Triplet Loss, Dimensionality reduction
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. . HTL-C HTL-NC
Dataset | Classifier dim AUC EER AUC EER
- - | OCSVM 20912 | 0.778 0283 | 0.778 0.283
Bt TS Clustering IF 2,912 | 0.804 0.267 | 0.807 0.271
OFD EVM 2912 | 0.617 0.670 | 0.704 0.518
@ = 8 S (. Open-Set OCSVM 256 | 0.695 0.251 | 0.489 0.504
—> P et — . IF 128 | 0.654 0386 | 0.670 0.333
' S Training EVM 96 | 0497 0.993 | 0.657 0.669
TRIPLET OCSVM 2912 | 0.756 0.149 | 0.786 0.179
LOSS IF 2,912 | 0.882 0.194 | 0.882 0.224
EVM 2912 * * < &
FECA0 ) ocsvm 16 | 0548 0463 | 0724 0269
Baseline in closed set scenario IF 32 | 0778 0269 | 0.849  0.194
EVM 32 | 0738 0313 | 0717 0313

e DFD: AUC of 76.23 and an EER of 0.303
e FF C40: AUC of 99.46 and an EER of 0.29
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CONCLUSION

v' The open-set approach to deepfake detection is more challenging, but it provides a
more robust model against variations in the generation technique.

v" By employing Triplet Loss with Hard mining during feature extractor training, we
achieved better results than those obtained with the closed-set approach.

v" Dimensionality reduction and fine-tuning did not yield benefits for our model.

v' The proposed organizational chart can be evaluated using other methods of
extraction, dimensionality reduction, clustering, and fine-tuning.

v’ Initializing feature extractor weights using self-supervised methods.
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