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Introduction Experiments with AES and other cryptosystems
Mutual Information (Ml) MI Estimation for Various Encryption Schemes
* Quantifies the amount of information obtained from observing 4
one random variable by another ’%3-5
+ 106Y) = HOO = HKXIY) = HOY) = HUYIX) .. ——
» Calculating MI of high dimension variables Is very challenging 2 5
£15
Mutual Information and Cryptography ”é :
 Use of Ml as a tool to understand security has an extensive O'g
history, dating back to Shannon [1] N S N N N R Y I Y S S S SN NI NN
+ MI between a plaintext and a ciphertext that satisfies perfect AR S U B S S ‘f ‘a S O
. ocns
SECIECY IS 0 —AES CTR=AES ECB =Block Cipher—StPeam Cipher=—AES ECB (Non-uniform Input)
Mutual Information Neural Estimation - Different trials on a simplified block cipher, stream cipher, and
Donsker-Varadhan representation of KL divergence can be used different mode§ Of AES | |
to calculate a lower bound of Ml [2] * |Input uniformity has an impact in the leakage for AES ECB
Do (P UIP) = sup E. [F1— los(Es [eF mode, a deterministic but complex encryption scheme
kL (P1]|P2) F:QBR P1[ | g( Pz[ ]) )
-

Modelling F as a neural network Fy, optimized to find I5(X;Y)
using stochastic gradient descent with a stabilizing term [3]:

Io(X;Y) = Epy,, [Fs] — 108(Epcxper[e?])

— 0.1(log(Epcyp(ry|e0]))?

Crypto-MINE Algorithm

Input: Plaintext M for N samples
Encrypt(M) for Ciphertext C for N samples

Initialize Neural Network parameters ©

Find MI [(M;C) for the sample set

‘ Repeat Untill

convergence

Compute SGD, optimize and update ©

Hybrid Universal Network Coding Cryptosystem

« HUNCC provides L
individual computational | e o
security through coding e | o, ¥
and partial encryption [4] PR f

* Ml leakage from different . .
levels of input uniformity are e
measured

« HUNCC leaks MI between
plaintext and ciphertext
when the input is non-
uniform

 The leakage reduces
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Unsecure Multipath

HUNCC and AES MI Estimation at varying levels of Uniformity
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Baseline experiments

MI Estimation for Baseline Encrpytion

One Time Pad with key in input =No encryption

Empirical verification on simple encryption schemes
Schemes such as the one time pad leak no MI while other
schemes such as an XOR with a constant key leak lots!

Conclusions

« CRYPTO-MINE allows us to perform a cryptanalysis of any
encryption system Iin a known plaintext attack setting

* This can be extended to model different popular security tests

* Application of HUNCC with non-uniform inputs or with
compression schemes may not be leaking a lot of information
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