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ABSTRACT
Online adaptation to distribution shifts in satellite image seg-
mentation stands as a crucial yet underexplored problem. In
this paper, we address source-free and online domain adap-
tation, i.e., test-time adaptation (TTA), for satellite images,
with the focus on mitigating distribution shifts caused by
various forms of image degradation. Towards achieving this
goal, we propose a novel TTA approach involving two ef-
fective strategies. First, we progressively estimate the global
Batch Normalization (BN) statistics of the target distribution
with incoming data stream. Leveraging these statistics during
inference has the ability to effectively reduce domain gap.
Furthermore, we enhance prediction quality by refining the
predicted masks using global class centers. Both strategies
employ dynamic momentum for fast and stable convergence.
Notably, our method is backpropagation-free and hence fast
and lightweight, making it highly suitable for on-the-fly adap-
tation to new domain. Through comprehensive experiments
across various domain adaptation scenarios, we demonstrate
the robust performance of our method.

Index Terms— Satellite Image, Test-Time Adaptation,
Domain Adaptation, Segmentation

1. INTRODUCTION

In real-world satellite image segmentation, numerous situa-
tions can arise that require domain adaptation. For instance,
variations between satellite images taken from different cities
or diverse sensor noise characteristics from different satellites
can lead to discernible domain disparities. These disparities
can hinder a model trained on a specific dataset from gener-
alizing effectively to target datasets. Unsupervised domain
adaptation (UDA) [1, 2] helps bridge these gaps but typically
requires both source and target data, which isn’t always fea-
sible due to privacy and storage constraints. To address this,
methods like [3, 4] have been proposed, allowing adaptation
without the need for source data, known as source-free do-
main adaptation (SFDA).

Both UDA and SFDA require the entire target domain
data to be available during adaptation. Additionally, the adap-
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tation is performed offline, meaning that it occurs before the
model is deployed. However, many situations might arise
when online adaptation is necessary, especially in cases of
domain shifts during the online segmentation of satellite im-
ages using the deployed model. For example, during natu-
ral disasters such as earthquakes, floods, and wildfires, online
segmentation is crucial for quickly identifying affected areas,
assessing damage, and prioritizing rescue and relief efforts.
Online segmentation can also be used to monitor crop health,
detect disease outbreaks, and estimate yields. However, such
online segmentation scenarios can face major challenges due
to the degradation of satellite images caused by various fac-
tors, including different characteristics of sensor noise, atmo-
spheric and weather conditions (e.g., rain, fog). Hence, the
development of a model that can adapt to such domain shifts
on-the-fly and without having access to source data becomes
crucial. Such source-free and online adaptation is also termed
as test-time adaptation (TTA) in the literature [5].

In this paper, we propose a novel TTA approach for satel-
lite image segmentation. Previous research [6] has shown that
utilizing Batch Normalization (BN) statistics during inference
instead of the source pre-trained statistics can effectively mit-
igate domain gap. By employing a running average method
with dynamic momentum, we accurately approximate target
BN statistics. This significantly reduces the domain gap and
enhances performance compared to source models. Further-
more, we take a running average of confident pixels to keep
track of global class centers to further refine the prediction
map. Importantly, our method does not require any backprop-
agation during adaptation; hence, it is fast and lightweight.
This feature is highly desirable in scenarios like TTA of satel-
lite images, where images are typically high-resolution and
can take up a significant amount of storage. A lightweight
adaptation method ensures it does not impose additional
memory constraints.

Moreover, an additional limitation in the current domain
adaptation research for satellite images is that it mainly fo-
cuses on adapting between different geographic regions, over-
looking domain gaps that arise from various sources of degra-
dation such as sensor noise, weather conditions, etc. Address-
ing such domain gaps is even more crucial during online adap-
tation, as mentioned earlier. The primary reason behind this

https://sat-tta.github.io


is the scarcity of datasets dedicated to these specific forms of
degradation. To address the gap, we introduce a new synthetic
satellite image dataset by simulating different forms of image
degradation. In summary, our contributions are:
• We address a novel problem of source-free and online do-

main adaptive semantic segmentation of satellite images
under various forms of image degradation. To the best of
our knowledge, this is the first work to explore such setting
for satellite image segmentation.

• We present a novel TTA method that involves approximat-
ing the target BN statistics and global class centers with
incoming data stream using dynamic momentum value.

• We evaluate our method on the TTA of satellite images and
demonstrate that our method outperforms state-of-the-art
generic TTA approaches on this task.

2. BACKGROUND

Related Works: Previous research [1, 2, 7] have examined
UDA for satellite images. Notable methods include genera-
tive approaches [2], discrepancy-based approaches [7], and
self-training [8]. UDA for satellite images has also been
extended to the source-free case by [3, 4]. Recently, many
generic TTA methods have been proposed for both classifica-
tion and segmentation tasks. In particular, TENT [5] adapts
a pre-trained source model on incoming target data by mini-
mizing entropy and updating the Batch-Norm parameters of
the source model. On the other hand, DUA [9] continuously
updates the BN statistics of the pre-trained source model
with the incoming test batches in order to align to the target
distribution. Also, DIGA [10] mixes source statistics with
incoming target statistics for adaptation.
Problem Definition: Consider a segmentation model fθ0 pre-
trained on the source image data Xs ∼ Ds, where Ds denotes
the source distribution. During deployment, the model en-
counters a sequence of test data X1 → X2 → . . . → Xt →
. . ., where Xt represents a small batch of test samples from the
source degraded stationary target distribution DT. Following
the TTA setting, the model only has access to Xt at an in-
stance. Furthermore, the model needs to adapt to each incom-
ing test batch Xt and update its parameters from fθt−1

→ fθt
in order to improve its output on the subsequent test batches.

3. METHOD

Our main objective is to achieve efficient online adaptation
without imposing significant additional resources. To meet
this objective, we employ two backpropagation-free strategies
that significantly enhance performance in the new domain.
Distribution Matching: Image degradation can cause the
feature distribution of target domain to be different from
source distribution. Hence, we need to align both the distri-
bution for adaptation. Li et al. [6] have demonstrated that

utilizing the BN statistics of the target domain during infer-
ence instead of the pre-trained source statistics can effectively
mitigate domain gap. However, TTA usually assumes very
small batch size per instance for adaptation. Hence, approx-
imating the correct BN statistics for target distribution with
such small amount of data per instance is difficult. To ad-
dress the problem, we utilize running average of BN statistics
to progressively approximate the global BN statistics of the
incoming domain. Specifically, during testing on the current
batch t, let µ̃lc and σ̃lc represent the BN statistics (mean and
variance) computed from the l-th layer’s c-th channel of the
model. We calculate two running averages as follows:

µt
lc = (1− αt)× µt−1

lc
+ αt × µ̃lc (1)

σt
lc = (1− αt)× σt−1

lc
+ αt × σ̃t

lc . (2)

Here, µt
lc

and σt
lc

denote the running BN statistics that get
updated with each incoming test batch. We initialize µ0

lc
and

σ0
lc

with the BN statistics of the pre-trained source model, and
αt is the momentum value that controls the effect of current
batch statistics on the running statistics.

In fact, designing the momentum term accurately is im-
portant. While a constant value may serve its purpose, it
weighs all the incoming test batches equally to update the
running BN statistics. A high value of momentum renders the
running stats sensitive to outliers. On the other hand, setting a
small constant value for the momentum, will result in the run-
ning stats to converge slowly. To overcome these challenges,
we adopt a dynamic approach for the momentum, gradually
reducing its value after each iteration according to the for-
mula:

αt = αt−1 × γdm (3)

Here, γdm is a constant in the interval (0, 1). This dynami-
cally decreasing momentum ensures that the running statistics
eventually stabilize to a constant value, serving as an approx-
imation of the global BN statistics for the target domain.
Instance Matching: Corruption or degradation can cause a
notable divergence in the visual attributes of specific indi-
vidual pixels in target images compared to the source im-
age, potentially leading to inaccurate predictions. To address
the problem, inspired by previous works [10, 11, 12] that use
prototype-based methods, we calculate a running average of
the features of confident classes and leverage them to guide
the recognition of wrongly recognized pixels. However, un-
like previous approaches, we use a dynamic momentum value
that helps for faster and more stable convergence.

Specifically, let the output logits of the segmentation
model after correcting for BN Statistics, be denoted as
F ∈ RC×H×W , where C, H , and W denote the channels,
height, and width of the feature map, respectively. The clas-
sifier takes F to predict the softmax output L ∈ RK×H×W ,
where K is the number of classes. The straightforward def-
inition of a region or class center of class i for the current



Table 1. Adaptation Performance in IoU (%) of our method and baseline methods. The model is pre-trained on the clean and
uncorrupted training set and during test-time, adapted to the source-degraded target domain in an online manner.

Task Method
IoU (%)

mIoU (%)
Agriculture Rangeland Forest Water Barren Urban

Clean
↓

Gaussian
Noise

Source-Only 32.4 14.3 37.5 42.2 29.0 55.8 35.2
TENT [5] 74.5 16.9 60.8 29.8 46.8 60.1 48.2
DUA [9] 67.3 19.7 52.8 47.8 48.4 63.9 50.0

DIGA [10] 75.8 16.6 62.2 29.4 54.1 62.4 50.1
OURS 77.3 18.6 66.5 45.0 52.2 64.0 53.9

Clean
↓

Impulse
Noise

Source-Only 37.2 15.3 47.0 40.7 27.3 56.4 37.3
TENT 75.3 18.0 64.5 31.3 48.7 61.5 49.9
DUA 71.1 20.1 61.1 44.2 47.8 64.9 51.5
DIGA 75.2 20.0 61.9 25.1 52.7 63.3 49.7
OURS 78.1 22.9 67.8 48.6 54.0 65.5 56.1

Clean
↓

Gaussain
Blur

Source-Only 78.3 16.8 66.2 54.9 57.9 62.2 56.1
TENT 78.6 19.5 68.4 61.6 58.2 60.9 57.9
DUA 80.3 22.7 68.5 58.5 60.1 66.1 59.4
DIGA 80.5 16.1 70.9 64.6 59.5 64.1 59.3
OURS 81.4 23.9 73.3 67.5 61.3 64.6 62.0

Clean
↓

Snow

Source-Only 0.0 0.0 6.5 3.7 2.1 8.7 3.5
TENT 68.5 14.8 59.0 20.3 32.4 46.2 40.2
DUA 11.0 9.0 34.9 10.2 15.2 22.2 17.1
DIGA 50.5 12.6 57.0 14.7 24.2 48.3 34.5
OURS 72.1 16.2 62.1 32.7 42.1 49.1 45.7

Clean
↓

Fog

Source-Only 11.7 6.4 8.9 4.4 18.3 25.6 12.6
TENT 72.2 15.4 45.9 31.6 37.3 47.1 41.6
DUA 51.0 15.3 32.3 10.3 31.4 39.6 30.0
DIGA 68.0 14.4 45.4 38.8 37.5 45.2 41.6
OURS 75.6 18.6 57.4 43.9 43.9 51.9 48.6

sample can be defined as:

R̃i =

∑
x,y F(x,y)I[argmax(L(x,y)) = i,max(L(x,y)) ≥ P0]∑

x,y I[argmax(L(x,y)) = i,max(L(x,y)) ≥ P0]

(4)

where I(·) is the binary indicator denoting whether the pixel
belongs to class i and the predicted probability for that class is
greater than P0. For each class center, we compute a running
average to capture the global class center prototype of that
particular domain. Define Rt

i as follows:

Rt
i = (1− βt)×Rt−1

i + βt × R̃i (5)

Here also, we use a dynamic momentum value for β:

βt = βt−1 × γim (6)

Given the class centers, we can calculate the instance-
matched prediction P ∈ RK×H×W as follows:

P(K=i,x,y) =
exp(− < F(x,y), R

t
i >)∑

K ̸=i exp(− < F(x,y), R
t
i >)

(7)

Then, the final prediction mask M can be computed by
weighting with γ:

M(x,y) = (1− γ)× L(x,y) + γ × P(x,y) (8)

4. EXPERIMENTS

Dataset: We use the benchmark satellite dataset DeepGlobe
[13] as our primary dataset. To simulate some of the most
common image corruptions observed in satellite images, such
as Gaussian Noise, Impulse Noise (commonly known as Salt
and Pepper Noise), Gaussian Blur, Fog, and Snow, we uti-
lize the RobustBench [14] simulation. These corruptions are
applied to the DeepGlobe test set.
Baseline Models: For the baseline models, we have selected
state-of-the-art generic TTA algorithms - TENT [5], DUA [9],
and DIGA [10]. The source codes for all the baseline methods
are publicly available. We also report the Source-Only perfor-
mance, which is the result obtained from the evaluation of the
source model on the target distribution without performing
adaptation.
Implementation Details: We have utilized DeepLab-v3 [15]
with a ResNet-50 backbone as our segmentation model. The
hyperparameters we have used include α0 = β0 = 0.9,
γdm = γim = 0.95, γ = 0.2, and P0 = 0.5. DeepGlobe
images are resized to a shape of 512× 512. Our batch size is
set to 8. As for the baseline methods, we have followed the
hyperparameter choices specified in their respective papers.
Results: Our adaptation performance is presented in Table 1.
Initially, the source model is trained on the clean and uncor-



rupted DeepGlobe train set. During testing, we sequentially
adapt the clean model to each batch of target images from the
target domain involving image degradation. As observed in
Table 1, degradation can severely impact the performance of
the Source-Only model, even to the extent where the source
performance drops to as low as 3.5%, particularly in the case
of snow. This is a significant drop considering the fact that
the source model achieves an mIoU of 62.9% on the clean
and uncorrupted DeepGlobe test set. This phenomenon un-
derscores the critical need for adaptation in the context of de-
graded satellite images. Furthermore, Table 1 demonstrates
that in all cases, our method has consistently outperformed all
the baseline models in terms of mean performance. We also
provide visualizations of the predicted segmentation masks
generated by our method in Figure 1. For comparison pur-
poses, we show the predictions of the Source-Only model. It
is evident that the naive source-only prediction, without adap-
tation, performs poorly. Conversely, our method generates
output masks that closely resemble the actual ground truth.
Ablation Study: Here, we aim to demonstrate the effective-
ness of the two strategies employed in our method. Specifi-
cally, we focus on the Clean to Impulse Noise adaptation task,
and the results are presented in Table 2. It clearly illustrates
that both strategies are individually effective in adaptation.
Furthermore, combining the results of both methods leads to
even greater improvements in performance.

Table 2. Ablation study for the distribution matching (DM)
and instance matching (IM) strategies used in our method.

DM IM mIoU (%)
✗ ✗ 37.3
✗ ✓ 50.7
✓ ✗ 54.8
✓ ✓ 56.1

In our method, we have employed a dynamic momentum
value for both α and β. We now demonstrate the effective-
ness of using dynamic momentum over a fixed value for both
parameters.

Table 3. Efficacy of dynamic momentum.
Momentum 0.1 0.5 0.9 Ours
mIoU (%) 34.8 51.4 47.3 56.1

As shown in Table 3, it is clear that using dynamic mo-
mentum is more effective than using a constant value. Ad-
ditionally, constant values have the disadvantage of being
sensitive to outliers and may require fine-tuning for different
datasets based on domain distance. In contrast, dynamic mo-
mentum is robust to these disadvantages and ensures a faster
and stable convergence.

Input GT Mask Source-Only Ours

Fig. 1. Comparison of the predicted mask of our method with
the Source-Only model. The rows correspond to examples
of Gaussian Noise, Impulse Noise, Gaussian Blur, Snow and
Fog from top to bottom respectively. Color-coded legends:

(Agriculture), (Rangeland), (Forest), (Water),
(Barren), (Urban).

5. CONCLUSION

In this paper, we have addressed the problem of source-free
and online adaptation of satellite images to distribution shifts
caused by various forms of image degradations. To address
this issue, we have presented a novel TTA method that uti-
lizes the running average of target BN statistics to approxi-
mate the global BN statistics. Additionally, we employ global
class centers to further refine the segmentation masks. Our
method is backpropagation-free and lightweight, making it
well-suited for online adaptation of satellite images. Through
various experiments, we have demonstrated that our approach
outperforms several state-of-the-art generic TTA methods in
this task.
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