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Motivation
• Planetary gearbox condition monitoring and quality surveillance.
• Get a clear interpretation of the vibration spectrum contents.
• Identify an empirical model with an automatic fashion for a planetary gear-

box vibration signal.
• Past practice: visually and manually inspecting the contents of the spec-

trum.

Introduction
• A single-stage planetary gearbox consists of a sun gear at the center that

meshes with P planet gears placed at different angular positions around it.

• Physics knowledge : Gear meshing generates vibration signals that interact
with the rotational motion of rotary system elements.

• Modeling: Identify a nonlinear mixing function that accurately interprets the
spectral content of s(t) as follows:

s(t) =

P∑
p=1

Fp(s1,p, s2,p, s3,p, s4,p)

where:

– Fp are unknown mixture functions,

– si,p are the elementary vibration sources depends on the planet p
angular position.

– The source si are a Ti-periodic signal.

• Blind Source separation : Under stationary conditions, separate the individ-
ual contributions of vibration sources. Certain sources are linked with the
system’s gear rotation frequencies.

• Literature Overview: Previous works have investigated different scenarios
of non-linear BSS (e.g., quadratic mixtures, polynomial mixtures) and post-
linear BSS.

• Available data: Gearbox’s shaft speed, Vibration measurements, gearbox
model kinematic.

Multivariate regression
• We consider a multivariate regression problem with a training set
{(Dt, st)}1≤t≤T/N with st = [s((t − 1)N + 1), · · · , s(tN)]T (N being a
processing window and T is the total sample size) and the dictionary Dt is
given by Dt = [Dt,1,Dt,2,Dt,3,Dt,4], where Dt,i is formed by the columns
of Di of indices k = (t− 1)N + 1, · · · , tN , defined as:

Di(:, k) = [sin(2πfik), cos(2πfik), · · · , (1)

sin(2πHmaxfik), cos(2πHmaxfik)]
T

• The signal s originates from an unknown analytical function F of sources
si, corrupted by an additive zero-mean noise, ϵ, i.e

s = F (s1, · · · , s4) + ϵ (2)

• Task: Recover elementary sources si and learn a function ψ that approxi-
mates the true functional relation F .

•

Neural Network
• We suggest using the equation learner (EQL) architecture, which is based

on a dense layer that incorporates some elements designed for Symbolic
regression, encompassing both binary fb and unary operators fu.

• The red and green colors represent the skip connections.
• Objective function:

J(θ) =
1

T
||ψθ(D)− s||2 + λRq(θ) (3)

• Rq is the sparsity regularization applied to the network weights θ = {W,b} defined as:

Rq =

L+1∑
i=1

∑
j,k

|W i
j,k|

q +

L+1∑
i=1

∑
j

|bij |q (4)

• We use a smoothed version of the L∗
0.5 that enforces sparsity.

Experiments
• For simulated data generation, we investigate the healthy case correspond-

ing to P = 1.
• Normalized fundamental frequencies for the four sources in are set to
{f1 = 0.045, f2 = 0.016, f3 = 0.023, f4 = 0.0013}.

• Signal length is set equal to T = 10, 000 samples.
• Harmonics number of each source is chosen arbitrarily between two and

three harmonics,
• Overestimated harmonics number is Hmax = 10.
• Optimizer: RMSprop, batch size 128, learning rate=0.001
• The EQL network shows a good fit of both the complexity of the model

measured by the L1 norm of the network weight and the reconstruction
error in Fig.3.

• The model identified in Fig.4 by the EQL is as
follows:

ŝ(t) = αŝ1(t)(a+bŝ2(t)+cŝ3(t))(d+eŝ4(t)),

where α, a, b, c, d, e are constants.
• Our method determines accurately the exact

sources, for different levels of noise, as shows
in Table 1.

Summary
• An end-to end framework is introduced for explaining the physical phenom-

ena and representing it in a concise mathematical form.
• Modeling/separation of the elementary sources from an observed nonlinear

mixture.
• Extend the proposed metholodlogy to deal with non-stationary signals.


