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Motivation Neural Network

Planetary gearbox condition monitoring and quality surveillance. » We suggest using the equation learner (EQL) architecture, which is based
Get a clear interpretation of the vibration spectrum contents. on a dense layer that incorporates some elements designed for Symbolic
ldentify an empirical model with an automatic fashion for a planetary gear- regression, encompassing both binary f;, and unary operators f,,.

box vibration signal.

Past practice: visually and manually inspecting the contents of the spec- H

trum.
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Introduction

* A single-stage planetary gearbox consists of a sun gear at the center that
meshes with P planet gears placed at different angular positions around it. @
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* The red and green colors represent the skip connections.
» Objective function:

\

Carrier plate

1
J(0) = Zll¢o(D) = sl + ARy (6) 8)
« R, is the sparsity regularization applied to the network weights 8 = {W, b} defined as:

Fig. 1. A planetary gear transmission with several planets. L+1 L+1
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» Physics knowledge : Gear meshing generates vibration signals that interact
with the rotational motion of rotary system elements.  We use a smoothed version of the £ - that enforces sparsity.
* Modeling: Identify a nonlinear mixing function that accurately interprets the

spectral content of s(¢) as follows: Experiments
P * For simulated data generation, we investigate the healthy case correspond-
S(t) — Z Fp(51,p7 52,p5 53,p; 34,19) ingto P = 1.
p=l1  Normalized fundamental frequencies for the four sources in are set to
where: {f1 = 0.045, fo5 = 0.016, f3 = 0.023, f4 = 0.0013}.

» Signal length is set equal to 1" = 10, 000 samples.

— I, are unknown mixture functions, . . L
 Harmonics number of each source is chosen arbitrarily between two and

— s;.p, are the elementary vibration sources depends on the planet p three harmonics,
angular position. » Overestimated harmonics number is H,,q4, = 10.
— The source s; are a T;-periodic signal. » Optimizer: RMSprop, batch size 128, learning rate=0.001

 The EQL network shows a good fit of both the complexity of the model
measured by the £, norm of the network weight and the reconstruction

» Blind Source separation : Under stationary conditions, separate the individ-
ual contributions of vibration sources. Certain sources are linked with the

: : : rror in Fig.3.
system’s gear rotation frequencies. ero g.3
. Literature Overview: Previous works have investigated different scenarios o o
. . . . : | 10° | - tona
of non-linear BSS (e.g., quadratic mixtures, polynomial mixtures) and post- 2|y o SN
linear BSS. | D
 Available data: Gearbox’s shaft speed, Vibration measurements, gearbox Ll T |
model kinematic. . ) 1 1078 = 2 4
A 10 A 10
M u Itivariate reg reSSion Fig. 3. Signal reconstruction error and the £, norm of the  Fig. 4. The ultimate neural network after regularization and
network weights versus A and over multiple levels of SNR. thresholding where only the desired inputs are activated.
We consider a mu!tlvarlate regression problem with aT training - set * The model identified in Fig.4 by the EQL is as
{(Dt,St)}lStST/N Wlth St — [S((t — 1)N _|_ 1), te e ,S(tN)] (N belng d follows: SNR | e(s1,81) | ¢(s2,82) | ¢(83,83) | e(sa,84) | e(s,8)
. . . . . . . inf dB ().996 ().9958 1.0 ().99% (.99
processing window and 1’ is the total sample S|ze). and the dictionary Dy Is 5(t) = as1 (£) (a-+bs (£)+css (1)) (d-+esa(£)), [0 | 09 | 0998 | ooox | osss | oo
givenby D; = Dy 1, D, 2, Dy 3, D, 4], where D, ; is formed by the columns - s ~ ~ ' -
where o, a, b, c, d, e are constants. Table 1. Correlation between real sources s; and estimated

of D; ofindices k= (t —1)N +1,--- ,tN, defined as:

 Our method determines accura’[ely the exact ones fc?r different !evelslc}f SNIx}.'.The correlation Lhetweefn the
sources. for different levels of noise. as shows input signal s and its estimated 5 1s also added to illustrate the

Di (Z, k) — [Sin(zﬂ'fik), COS(ZTFfik), s (1 ) in Table 1. reconstruction performance.
Sin(271 Hppaz fik), coS(2m Hyae fiK)]*

| - | | Summary
The signal s originates from an unknown analytical function F' of sources
s;, corrupted by an additive zero-mean noise, ¢, i.€ An end-to end framework is introduced for explaining the physical phenom-

ena and representing it in a concise mathematical form.
s = [(s1,--- ,84) + € (2) Modeling/separation of the elementary sources from an observed nonlinear
mixture.
Task: Recover elementary sources s; and learn a function ¢ that approxi- Extend the proposed metholodlogy to deal with non-stationary signals.
mates the true functional relation F'.

KEY REFERENCES .
[1] Murat Inalpolat and Ahmet Kahraman, “A theoretical and experimental investigation of modulation sidebands of planetary ram % / . ‘ “ \
gear sets,” Journal of sound and vibration, vol. 323, no. 3-5, pp. 677-696, 2009 \}/ SAFRAN ,,||||||[|||| I CAS S P
[2] Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Ceperi ¢, and Marin Soljaci c, “Integration U nivers”é
of neural network-based symbolic regres- sion in deep learning for scientific discovery,” IEEE transactions on neural . ’ KOREA
networks and learning systems, vol. 32, no. 9, pp. 4166—4177, 2020 d o RLEANS 2024



