

Rich Prosodic Information Exploration on Spontaneous Mandarin Speech

Cheng-Hsien Lin¹, Chung-Long You¹, Chen-Yu Chiang², Yih-Ru Wang¹, Sin-Horng Chen¹ ¹Dept. of Electrical and Computer Engineering, National Chiao Tung University, Taiwan ²Dept. of Communication Engineering, National Taipei University, Taiwan

Summary

- The joint prosody labeling and modeling algorithm for Mandarin read speech is extended for spontaneous speech by additionally considering the affecting patterns:
- Particular Unit (PU) type: particle, marker, uncertain and 1. foreign speech
- 2 Part of speech for normal speech part
- Break types of syllable boundaries 3
- Syllable contraction and lengthening 4
- A hierarchical prosodic model (HPM) is constructed for mandarin spontaneous speech using MCDC corpus
- The prosodic characteristics and disfluency events of spontaneous Mandarin speech are explored by investigating the parameters of HPM

The Hierarchical Prosody Modeling

- The four-layer prosodic structure consisting syllable/particular unit (SYL/PU), prosodic word (PW), prosodic phrase (PPh), and breath group/prosodic phrase group (BG/PG) is adopted
- Two types of tags are employed to represent the prosody structure: **BREAK type** (syllable/PU juncture) and **PROSODY STATE** (inside syllable/PU)

B 4	BG/PG								
B 4	PPh			B 3	PPh	B 4			
B 4	PW	B 2	PW	B3	PW	B 4			
B 4	SYL/PU	B 2	SYL/PU	B3	SYL/PU B0/B1 SYL/PU B0/B1 SYL/PU	B 4			

The HPM describes the relationships among prosody tags (T), prosody-acoustic (A) and linguistic features (L), and can be expressed by 8 sub-models:

$P(\mathbf{T}|\mathbf{A},\mathbf{L},\Lambda)$ 1

 $p(\mathbf{sp}_n|B_{n-1}^n, p_n, t_{n-1}^{n+1}, pos_n)p(sd_n|B_{n-1}^n, q_n, t_n, s_n, pos_n, cl_n)$ $p(se_n|B_{n-1}^n,r_n,t_n,f_n,pos_n)$

 $P(p_1)P(q_1)P(r_1) \prod P(p_n|p_{n-1}, B_{n-1})P(q_n|q_{n-1}, B_{n-1})P(r_n|r_{n-1}, B_{n-1})$

$\left[\left(P(pd_n,ed_n,pj_n,dl_n|B_n,\mathbf{l}_n)P(B_n|\mathbf{l}_n)\right)\right]^{8}$

- Prosody tags include Breaks (B) and prosody states of pitch contour (p), duration (q), and energy (r) for syllable/PU
- $T = \{B_n, p_n, q_n, r_n \mid n = 1 \cdots N\}$ (1,2,3,7) Prosody-acoustic feature related sub-models, representing within syllable/PU features: pitch (sp), duration(sd), energy(se), and between syllable/PU features: pause duration(pd), energy dip(ed), pitch jump(pj) and duration lengthening(dl)
 - $\mathbf{A} = \{sp_n, sd_n, se_n, pd_n, ed_n, pj_n, dl_n | n = 1 \cdots N\}$

(4.5.6) Prosody-state sub-models of pitch, duration and energy

- (8) Break-syntax sub-model
- The linguistic feature set (L) includes: reduced linguistic feature(l), tone(t), base-syllable(s), final(f), part-of-speech(pos), and contraction/lengthening tag(cl)
 - $\mathbf{L} = \{l_n, t_n, s_n, f_n, pos_n, cl_n | n = 1 \cdots N\}$
- sp sd and se are further expressed.

 $p(\mathbf{sp}_n|B_{n-1}^n, p_n, t_{n-1}^{n+1}, pos_n)$

 $\int N(\mathbf{sp}_n; \beta_{l_n} + \beta_{B_{n-1}, Ip_{n-1}}^f + \beta_{B_{n-1}, Ip_{n-1}}^b + \beta_{pos_n} + \beta_{B_{n-1}, B_n} + \beta_{p_n} + \beta_{s_p}, \mathbf{R}_{s_p}^r), \text{ for SYL}$ $\left[N(\mathbf{sp}_{n};\beta_{pu_{n}}+\beta_{B_{n-1},B_{n}}+\beta_{p_{n}}+\beta_{pu_{n}}\mathbf{sp},\mathbf{R}_{pu_{n}}^{r}\mathbf{sp})\right],$ for PU

$$= N(sd_n; \gamma_{cl_n} + \gamma_{t_n} + \gamma_{s_n} + \gamma_{pos_n} + \gamma_{d_{n-1}B_n} + \gamma_{d_n} + \mu_{sd}, R_{sd}^r), \text{ for SYL}$$

$$= N(sd_n; \gamma_{cl} + \gamma_{pu}, + \gamma_{B_{n-1}B_n} + \gamma_{d_n} + \mu_{pu}, sd, R_{pu}, sd), \text{ for PU}$$

$p(se_n|B_{n-1}^n,r_n,t_n,f_n,pos_n)$

 $N(se_n;\alpha_t + \alpha_f + \alpha_{pos} + \alpha_{B_1,B} + \alpha_r + \mu_{se}, R_{se}^r)$, for SYL $N(se_n; \alpha_{pu_n} + \alpha_{r_n} + \alpha_{B_{n,1},B_n} + \mu_{pu_se}, R_{pu_se}^r),$ for PU

- $\beta_x \, \gamma_x \, \alpha_x$ are the affecting patterns (APs) of affecting factors x for syllable/PU pitch contour, duration, and energy models $\mu_x(\mu_x) = \mathbf{R}_x(R_x)$ denote the global mean vector and covariance
- matrix of modeling residual The unsupervised PLM algorithm is employed to simultaneously train the HPM and label the corpus with prosodic tags.

 $\mathbf{T}^*, \Lambda^* = \arg\max_{\mathbf{T}} P(\mathbf{T}|\mathbf{A}, \mathbf{L}, \Lambda)$

Database and Preprocess

Database

- MCDC 8-hour dialogues from 16 speakers

- Texts with phonetic and linguistic tags are transcribed by linguist experts

- Spontaneous speech characteristics: repetition/restart/repair, pause, pronunciation variation and sociolinguistic phenomena are also annotated
- Syllable alignment
- HMM forced alignment with manual error correction
- Svllable acoustic features
- Utterance level mean-and-variance normalization for duration and energy
- Speaker level mean-and-variance normalization for F0 values
- Syllable contour is represented by four Legendre Polynomial coefficients

Modeling results of HPM

The total residual errors (TREs) of modeling for normal syllable

Pitch		Durat	ion	Energy			
AF TRE		AF TRE		AF	TRE		
-		+Contra.& Lengthen. (cl _n)	81.2%	-			
$+\text{Tone}_{(t_n)}$	90.7%	+Tone	78.9%	+Tone	94.4%		
+Coarticul- ation(tp _n)	84.1%	+Syllable Type _(S_n)	68.6%	+Final (f _n)	85.3%		
+POS (pos_)	77.2%	+POS	65.2%	+POS	82.4%		
+Break (B _s)	71.7%	+Break	56.0%	+Break	80.1%		
+Prosodic State (p_n) 8.0%		+Prosodic State _(q_n)	3.6%	+Prosodic State _(r_n)	2.3%		

TREs of modeling for PU

Pitch		Durati	on	Energy				
AF TRE		AF	TRE	AF	TRE			
-		+Contra.& 84.4% -						
		Lengthen.						
+PU ID	00.00/	+PU ID	72.20	+PU ID	0.000			
(pu_n)	85.5%		72.2%		86.5%			
+Break	+Break 76.3%		64.6%	+Break	81.4%			
+Prosodic	0.59/	+Prosodic	2.09/	+Prosodic	44.294			
State	9.370	State	2.970	State	44.270			

SYL/PU duration APs of contraction, lengthening and normal speech Largely elong

Normal

-19

Lengthening Contraction SYL duration (ms) 156

SYL duration APs of prosody states and the histograms of normal syllable and PU

Analysis on Disfluency Events

•	Th	e utterance examples	of Repetition

ype	Start Interrupt End Sentence
1	△對對對對對對 →對對 →對 →對 →對 →
	^(dui)*(dui)*(dui)#wo you ting shuo suo yi xiang wo xian sheng
	jiang yi qian you yi zhong shuo fa
2	因為^(他)*(他)#舉了一個例子
	yin wei^(ta)*(ta)#ju le yi ge li zi
3	待一整天對^ (類似)*(類似)#亞歷山大那種
	dai yi zheng tian dui^(lei si)*(lei si)#ya li shan da na zhong

- 吹涼風就覺得^(很舒服)*(很舒服)#所以這個 chui liang feng jiu jue de^(hen shu fu)*(hen shu fu)#suo yi zhe ge
- Break labeling results of repetition at different boundaries

Dominated by Non-pause breaks Interrupt boundary													
Туре	I	30	B1	В	2-1	B2	2-2	B2-3		B3			B4
1	28	8%	43%		9%	3%		15%		<19		%	
2	7	%	18%	2	5%	16	6% 99		6		20%		4%
3&4	4	%	11%		7%	15	%	15	%		19%		8%
End boundary Dominated by Short-to-long pause breaks													
Туре	E	30	B1	B	B2-1 B2		-2	B2-3		B3			B4
1		%	5%	4	1% 89		%	3%		29%			9%
2	2 19%		23%	3	7%	59	%	11	%		3%		1%
3&4	3&4 17%		29%	27%		6%		12%		6%			3%
Short stops for all three types Start boundary Utterance begin								ning					
Type	B0	B1	E	2-1		B2-2		B2-3	E	33	B4	1	Bs
1	2%	7%	1	14%		6%		8%	11	%	6%	4	46%
2	8%	25%	2	22%		9%		3%	14	%	5%		17%
3&4	9%	18%	2	23%		5%		5%	14	%	6%		19%

The utterance examples of Restart and Repair

Restart	^(我父)*(我父親)#也沒有EI
	^(wo fu)*(wo fu qin)#ye mei you EI
Repair	四十分鐘左右^(就到)*(就回到)#台北
_	si shi fen zhong zuo you^(jiu dao)*(jiu hui dao)#tai bei

Break labeling results of restart and repair at different boundaries

Restart									
Boundary	B0	B1	B2-1	B2-2	B2-3	B3	B4		
Start	10%	29%	24%	8%	10%	14%	5%		
Interrupt	2%	9%	34%	25%	9%	16%	5%		
End	15%	37%	20%	4%	15%	7%	2%		
			Repai	r Stop	s exist in the	speech flow			
Boundary	B0	B1	B2-1	B2-2	B2-3	B3	B4		
Start	13%	30%	24%	7%	13%	10%	3%		
Interrupt	3%	11%	29%	27%	10%	18%	2%		

The averaged pitch prosody state APs of reparandum and correction

. The averaged energy prosody state APs of reparandum and correction for restart and repair

The averaged duration prosody state APs of reparandum and

