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ABSTRACT

The multi-view hash method converts heterogeneous data from
multiple views into binary hash codes, which is one of the critical
technologies in multimedia retrieval. However, the current methods
mainly explore the complementarity among multiple views while
lacking confidence in learning and fusion. Moreover, in practi-
cal application scenarios, the single-view data contains redundant
noise. To conduct confidence learning and eliminate unnecessary
noise, we propose a novel Adaptive Confidence Multi-View Hash-
ing (ACMVH) method. First, a confidence network is developed
to extract useful information from various single-view features and
remove noise information. Furthermore, an adaptive confidence
multi-view network is employed to measure the confidence of each
view and then fuse multi-view features through a weighted sum-
mation. Lastly, a dilation network is designed to further enhance
the feature representation of the fused features. To the best of our
knowledge, we pioneer the application of confidence learning into
the field of multimedia retrieval. Extensive experiments on two pub-
lic datasets show that the proposed ACMVH performs better than
state-of-the-art methods (maximum increase of 3.24%). The source
code is available at https://github.com/HackerHyper/ACMVH.

Index Terms— Multi-view Hash, Adaptive Confidence Multi-
view Learning, Multi-modal Hash, Multi-view Fusion

1. INTRODUCTION

Due to the advantages of fast retrieval speed and low storage re-
sources, hash representation learning [1–8] is widely used in the field
of multimedia retrieval. Multi-view hashing utilizes the fusion of
data from various views to generate a binary hash code with stronger
semantic expression capabilities. How to effectively integrate multi-
view data is an important research direction.

Current multi-view hashing methods suffer from the issue of
untrustworthy fusion. The main reasons are detailed as follows.
First, the single-view data generally contain some redundant noise
features. For instance, Flexible Graph Convolutional Multi-modal
Hashing (FGCMH) [7] is a GCN-based [5] multi-view hashing
method. It first constructs the edges of the graph based on similarity
and then the GCN aggregates features of adjacent nodes. Unfortu-
nately, the noisy features of neighboring nodes are also introduced
and aggregated to generate new features of the nodes during this pro-
cedure. Therefore, it becomes necessary to remove noise and help
the multi-view hashing method achieve better performance. Sec-
ond, multi-view feature fusion lacks a measure of the confidence of
single-view features and the importance of measuring the confidence
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Fig. 1: Adpative Confidence Multi-View Learning. Firstly, perform
confidence network on individual view features to extract useful fea-
tures and suppress redundant features. Secondly, automatically learn
the confidence values of each single view feature and then fuse these
features by a weighted summation. Finally, a dilation network is im-
plemented on the fused feature to generate global representation.

of each single view is underrated. To get a global representation,
typical multi-view hashing methods such as Bit-aware Semantic
Transformer Hashing (BSTH) [9] use a simple sum operation to
fuse the multi-view features. However, the view-level confidence
is ignored during the fusing process, which incurs a weak expres-
siveness of fused features. The facts above result in the problem of
untrustworthy fusion.

To eliminate the redundant noise information and realize the
confidence multi-view learning [1–3], we propose a novel multi-
view hashing method termed Adaptive Confidence Multi-View Hash-
ing (ACMVH). As shown in Fig. 1, adaptive confidence multi-view
learning aims to learn an effective representation for the multi-view
hashing task. Firstly, we utilize a confidence network for the single-
view feature extraction, which can sift through useful features and
suppress noise features in each single view. Then, an adaptive con-
fidence multi-view network is used to implement confidence fusion,
which can automatically learn the confidence of each view. Further-
more, based on the learned confidence of each view, we can obtain
the trustworthy fusion through a weighted summation. Finally, we
develop a dilation network to perform on the fused representation
and enhance semantic representation further.

We evaluate the proposed ACMVH method on MIR-Flickr25K
and NUS-WIDE datasets in multi-view hash representation learning
benchmarks. Our ACMVH yields an improvement of up to 3.24%
in mean average precision (mAP), according to benchmark results.
Our main contributions are summarized as follows:

• To the best of our knowledge, this paper is the first to apply
the confidence learning to the multi-view retrieval tasks.

• We conduct experiments to validate the efficiency of our
method and achieve SOTA results in multimedia retrieval.
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Fig. 2: The flow chart of ACMVH method. The vision and text features are extracted by backbones respectively. Each single view feature
needs to be mined for useful information through the confidence network. Then, view-level adaptive confidence learning is performed, and
multiple view features are adaptively fused. Subsequently, the dilation network is performed on fused features to enhance the semantic
representation. Finally, the hash layer outputs the binary hash codes based on the enhanced semantic representation.

2. THE PROPOSED METHODOLOGY

We propose adaptive confidence multi-view learning (ACMVL) to
credibly fuse multi-view features and apply ACMVL to the field of
multimedia retrieval. In this section, we detail the neural structure of
our method and its objective.

2.1. Deep Multi-view Hashing Network

The deep multi-view hashing network transforms multi-view data
into binary hash code. As shown in Fig. 2, ACMVH consists of
(1) backbones, (2) confidence networks, (3) an adaptive confidence
multi-view network, (4) a dilation network, and (5) a hash layer.

2.1.1. Backbones

Let the training dataset be X =
{
{xi}Ni=1 , Y

}
, where xi ∈ RD is

a multi-view instance, N represents the number of samples. Y =
{y1, y2, . . . , yN} is a sequence set, where yi denotes the category
information of xi. We set xi =

{
x1
i , x

2
i , . . . , x

M
i

}
and M is the

number of views. Assume that

Zm
i = Backbonem(xm

i ), (1)

xm
i represents the original data of m-th view. The m-th view data

has a backbone network responsible for its respective feature Zm
i . In

our experiments, we utilize VGGNet [10] for vision feature extrac-
tion and Bag-of-Words model [11] for text feature extraction.

Then, we utilize a two-layer fully connected network as an en-
coder module. First, it can represent each view feature at a high
level. Next, each view feature is normalized to the same dimension
and threshold. Let

Em
i = Encoderm(Zm

i ), (2)

where Em
i ∈ Rd represents the extracted features of the sample

through the encoder module in the m-th view and d denotes the em-
bedding dimension of the m-th view.

2.1.2. Confidence Networks

To reduce the influence of noise features, we propose a confidence
network for each view to extract useful features and eliminate noise
features, which improves feature confidence in each view. Let

wm
i = σ(wcE

m
i + bc), (3)

where σ refers to the sigmoid activation function, wc ∈ Rd×d and
bc ∈ Rd are trainable parameters. The vector of weights wm

i ∈
[0, 1]d represents a set of learned gates applied to the individual di-
mensions of the encoded feature Em

i . With the learned weight vector
wm

i , the filtered features are obtained by the element-wise produc-
tion between the encoded feature Em

i and the weight vector wm
i for

each sample in each view as:

Cm
i = wm

i ⊙ Em
i . (4)

To recap, the confidence network transforms the backbone feature
Zm

i into a new representation Cm
i .

2.1.3. Adaptive Confidence Multi-View Network

The importance of individual views varies in multimedia retrieval
tasks. We learn the confidence value of each view as:

Ai =

M∑
m=1

(pm ∗ Cm
i ), (5)

where pm represents the confidence weight of m-th view. In fact, pm

is also a part of the neural network parameters, therefore, the optimal
pm can be obtained through training. Further, Ai is the result of the
confidence fusion of multiple view features.

2.1.4. Dilation Network

Lastly, a dilation network structure is developed for the semantic
enhancement of fused features. This module first increases the di-
mension of the fused features and then reduces them to the original
dimension. More precisely, the specific structure consists of two lay-
ers: Ui and Gi. First, Ui is defined as follows:

Ui = ReLU(wu1Ai + bu1), (6)

where ReLU refers to the ReLU activation function, wu1 ∈ Rd×4d

and bu1 ∈ R4d are deep network parameters. Then, we define Gi by

Gi = wu2Ui + bu2 +Ai (7)

wu2 ∈ R4d×d and bu2 ∈ Rd are trainable parameters. Notice that,
Gi is the final global representation of multi-view features.
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Table 1: General statistics of two datasets. The dataset size, number of categories, and feature dimensions are included.

Dataset Training Size Retrieval Size Query Size Categories Visual Embedding Textual Embedding

MIR-Flickr25K 5000 17772 2243 24 4096-D 1386-D
NUS-WIDE 21000 193749 2085 21 4096-D 1000-D

2.1.5. Hash Layer

A linear layer with a tanh activation is hired as the hash layer, which
can be represented as:

hi = tanh(whGi + bh), hi ∈ R1×k, (8)

bi = sign (hi) , bi ∈ {−1, 1}1×k, (9)

where sign is the signum function, wh ∈ Rd×k and bh ∈ Rk are
network parameters. k indicates that the hash layer generates k-bit
hash code.

2.2. Loss Functions

The loss function shown below is used to learn the hash codes while
taking the similarity metric between samples into account:

Lsim = ∥cos (hi, hj)− ϕij∥22 , (10)

where ϕ is the affinity matrix, which can model the relation between
relevant samples. ϕij is calculated as follows:

ϕij =
2

1 + e−yiy
T
j

− 1. (11)

Notice that, the category information is not completely utilized even
if pairwise category information is used to train the hash function in
Eq.(10). We believe that the learned binary codes should be suitable
for categorization. To describe the connection between the learned
binary codes and the category information, we utilize a simple linear
classifier. The classifier loss function can be formulated as:

Lclf =
∥∥y′

i − yi
∥∥2

2
, (12)

where
y′

i = Linear(hi), (13)

is the predicted value of the linear classifier and the squared L2 norm
is used as the loss for classification.

We can derive the total loss function as

Ltotal = Lsim + µLclf , (14)

where µ is the hyper-parameter obtained through grid search in our
work.

3. EXPERIMENTS

3.1. Evaluation Datasets and Metrics

We evaluate the proposed ACMVH method on multimedia retrieval
tasks in experiments. Two public datasets are selected: MIR-
Flickr25K [12] and NUS-WIDE [13]. These datasets are widely
used for evaluating multimedia retrieval performance. We use the
mean Average Precision (mAP) as the evaluation metric. The details
of two datasets used in experiments are summarized in Table 1.
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Fig. 3: The training loss and test mAP curves on MIR-Flickr25K
dataset.

3.2. Baseline

To evaluate the retrieval metric, we compare the proposed ACMVH
method with six multi-view hashing methods (e.g., Flexible Discrete
Multi-view Hashing (FDMH) [14], Flexible Online Multi-modal
Hashing (FOMH) [15], Deep Collaborative Multi-View Hashing
(DCMVH) [16], Supervised Adaptive Partial Multi-view Hashing
(SAPMH) [17], Flexible Graph Convolutional Multi-modal Hash-
ing (FGCMH) [7], and Bit-aware Semantic Transformer Hashing
(BSTH) [9]).

3.3. Analysis of Experimental Results

The experimental comparisons of all methods are conducted accord-
ing to the unified conditions of the train set, the retrieval set, and the
query set in Table 1. All multi-view hashing methods use the same
backbone networks to extract visual and textual features.

The mAP result is shown in Table 2. The results show that the
proposed ACMVH is overall better than all the compared multi-view
hashing methods by a large margin. For example, compared with
the current state-of-the-art multi-view hashing method Bit-aware Se-
mantic Transformer Hashing (BSTH) [9], the average mAP score of
our method has increased by 2.12%, and 2.05% on MIR-Flickr25K
and NUS-WIDE, respectively. The main reasons for these superior
results come from three aspects:

• The confidence network can extract useful features of a single
view effectively and suppress noise features.

• Adaptive confidence multi-view network could credibly fuse
the multi-view features into a global representation.

• Dilation network enhances the semantic representation of
fused multiple view embedding.

Adaptive confidence multi-view learning promotes the discrimina-
tive capability of hash codes.
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Table 2: The comparable mAP results on MIR-Flickr25K and NUS-WIDE. The best results are bolded, and the second-best results are
underlined. The * indicates that the results of our method on this dataset are statistically significant.

Method Ref. MIR-Flickr25K* NUS-WIDE*

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

FOMH MM19 0.7557 0.7632 0.7564 0.7705 0.6329 0.6456 0.6678 0.6791
FDMH NPL20 0.7802 0.7963 0.8094 0.8181 0.6575 0.6665 0.6712 0.6823
DCMVH TIP20 0.8097 0.8279 0.8354 0.8467 0.6509 0.6625 0.6905 0.7023
SAPMH TMM21 0.7657 0.8098 0.8188 0.8191 0.6503 0.6703 0.6898 0.6901
FGCMH MM21 0.8173 0.8358 0.8377 0.8606 0.6677 0.6874 0.6936 0.7011
BSTH SIGIR22 0.8145 0.8340 0.8482 0.8571 0.6990 0.7340 0.7505 0.7704

ACMVH Proposed 0.8424 0.8573 0.8692 0.8740 0.7314 0.7562 0.7719 0.7762

Table 3: Ablation Experiments On Two Datasets. Effects of Adaptive Confidence Multi-View Hash Architecture.

Methods MIR-Flickr25K NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

ACMVH-text 0.6921 0.7047 0.7201 0.7252 0.5876 0.6069 0.6308 0.6474
ACMVH-vision 0.8076 0.8213 0.8356 0.8464 0.6677 0.7041 0.7252 0.7413
ACMVH-concat 0.8108 0.8235 0.8442 0.8542 0.6924 0.7235 0.7576 0.7621
ACMVH-adaptive 0.8262 0.8390 0.8548 0.8662 0.7150 0.7455 0.7613 0.7721
ACMVH-confidence 0.8109 0.8341 0.8509 0.8587 0.7007 0.7339 0.7599 0.7710
ACMVH-dilation 0.8317 0.8394 0.8583 0.8670 0.7222 0.7512 0.7653 0.7735

ACMVH 0.8424 0.8573 0.8692 0.8740 0.7314 0.7562 0.7719 0.7762

3.4. Ablation Studies

To evaluate our method component by component, we perform an
ablation of the proposed ACMVH with different experiment settings
and report the performance. The experiment settings are as follows:

• ACMVH-text: Only the text feature is used for retrieval.
• ACMVH-vision: Only the vision feature is used for retrieval.
• ACMVH-concat: Vison and text features are fused with con-

catenation without adaptive confidence multi-view learning.
• ACMVH-adaptive: The adaptive confidence multi-view net-

work is removed.
• ACMVH-confidence: The confidence network is removed.
• ACMVH-dilation: The dilation network is removed.
• ACMVH: Our full method.

The comparison results are presented in Table 3. ACMVH-vision
performs better than ACMVH-text in all tasks by a large margin indi-
cating the vision features contain more useful information than text.
By comparing ACMVH-concat with ACMVH-vision, we performed
a basic concatenation of visual and text features to achieve a slight
performance improvement. ACMVH is the full use of our adaptive
confidence multi-view learning, which greatly improves the perfor-
mance of mAP compared to ACMVH-concat. Based on the perfor-
mance of ACMVH-adaptive, ACMVH-confidence, and ACMVH-
dilation, it is evident that the confidence network holds the highest
significance, followed by the adaptive confidence multi-view net-
work, and finally, the dilation network ranks last.

3.5. Convergence Analysis

To verify the generalization performance and convergence of
ACMVH, we conduct some experiments. We run hash bench-

marks with varying code lengths on the MIR-Flickr25K dataset.
Fig. 3 shows training loss and test mAP. As the training goes on, the
loss steadily decreases. The loss is steady after 60 epochs, proving
that the local minimum reaches. The mAP for the test metric rapidly
rises when the experiment begins. After 40 epochs, the test mAP
stays stable. Further training does not result in a deterioration of
the test MAP, indicating good generalization capability. We observe
similar results for different datasets

4. CONCLUSION AND FUTURE WORK

To enhance the feature representation, adaptive confidence multi-
view learning (ACMVL) is developed. Under multiple experiment
settings, it delivers up to 3.24% performance gain over the current
state-of-the-art methods. However, we notice some issues, for in-
stance, the performance gain is not quite significant as the length
of the hash code increases. We will work on these issues to further
improve the proposed method.
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