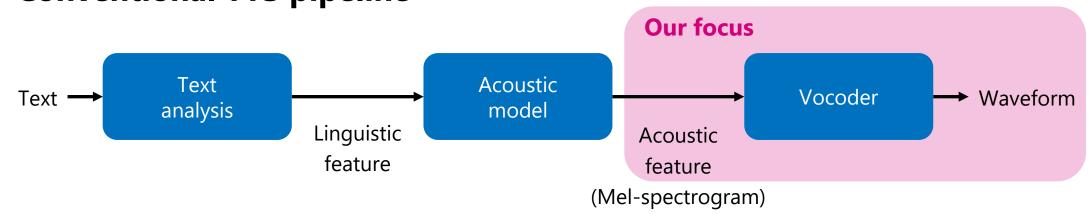
BigVSAN: Enhancing GAN-based Neural Vocoders with Slicing Adversarial Network

Takashi Shibuya, Yuhta Takida, Yuki Mitsufuji

ICASSP 2024

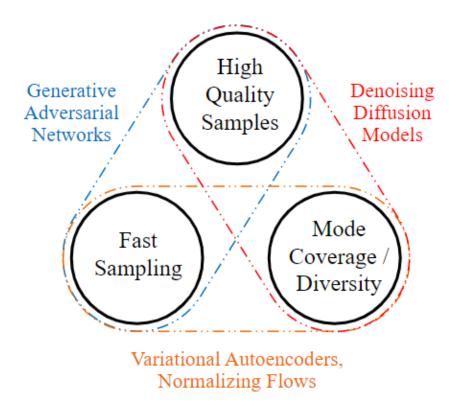
Introduction: Text-to-speech (TTS) models



Conventional TTS pipeline

Introduction: Deep generative models

Trilemma of generative models



Xiao et al., "Tackling the Generative Learning Trilemma with Denoising Diffusion GANs," ICLR 2022.

• Existing basic generative models compromise between three key requirements

In image generation or text-to-audio generation,

 Diffusion models are popular because "quality" and "diversity" are important. Many methods of accelerating diffusion models are being studied.

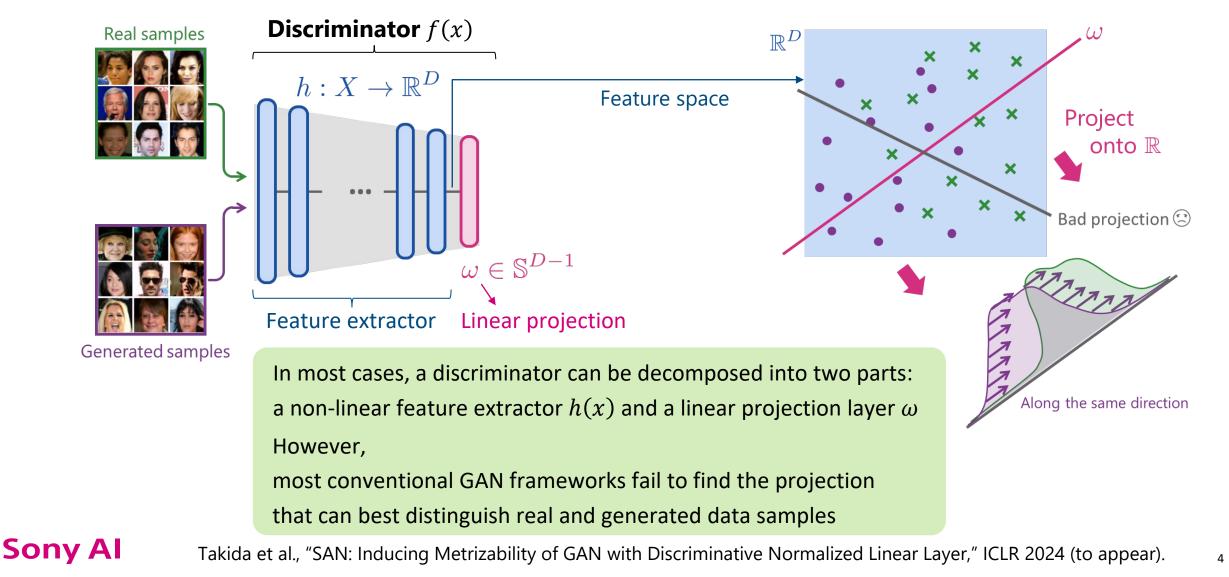
In vocoding,

- "Diversity" is not so important because a vocoder is required to synthesize a waveform corresponding to a given mel-spectrogram
- ⇒ **GAN** is still a reasonable choice

e.g., BigVGAN, HiFi-GAN, Parallel WaveGAN, etc.

Problem in GANs [Takida et al., ICLR 2024]

Decompose a discriminator f(x) **into** $f(x) = \langle \omega, h(x) \rangle$



SAN (slicing adversarial network) [Takida et al., ICLR 2024]

 $\min_{\theta} \mathcal{V}_{\text{GAN}}\left(\theta; \varphi, \omega\right) = \mathbb{E}_{p_{S}}\left[R_{3}\left(\left\langle \omega, h_{\varphi}\left(g_{\theta}(s)\right)\right\rangle\right)\right]$

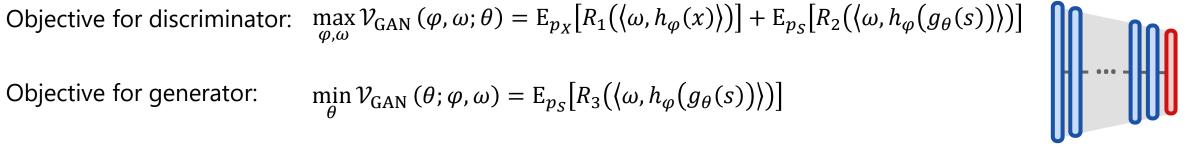
Conventional GAN

SAN

Sonv Al

Objective for generator:

 φ : feature extractor's parameter θ : generator's parameter



```
f_{\phi}(x) = \langle h_{\varphi}(x), \omega \rangle
```

5

The objective for discriminator is modified

Objective for discriminator: $\max_{\varphi,\omega} \mathcal{V}_{\text{SAN}}(\varphi,\omega;\theta) = \mathbb{E}_{p_X} [R_1(\langle \omega^-, h_{\varphi}(x) \rangle)] + \mathbb{E}_{p_S} [R_2(\langle \omega^-, h_{\varphi}(g_{\theta}(s)) \rangle)]$ $-\mathrm{E}_{n_{x}}[R_{3}(\langle \omega, h_{\omega}^{-}(x) \rangle)] + \mathrm{E}_{n_{s}}[R_{3}(\langle \omega, h_{\omega}^{-}(g_{\theta}(s)) \rangle)]$

 $\min_{\varphi} \mathcal{V}_{\text{SAN}}(\theta; \varphi, \omega) = \mathbb{E}_{p_{S}} [R_{3}(\langle \omega, h_{\varphi}(g_{\theta}(s)) \rangle)]$ Objective for generator: $()^{-}$: stop-gradient operator

SAN outperforms GAN in many combinations of architectures and image datasets. SAN achieved SOTA results on several image generation benchmarks.

Takida et al., "SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer," ICLR 2024 (to appear).

SAN-ify (Apply SAN to) GAN-based vocoders

All we propose in this paper is on this slide

<u>SAN</u>

Objective for discriminator: $\max_{\varphi,\omega} \mathcal{V}_{\text{SAN}}(\varphi,\omega;\theta) = \mathbb{E}_{p_X} [R_1(\langle \omega^-, h_{\varphi}(x) \rangle)] + \mathbb{E}_{p_S} [R_2(\langle \omega^-, h_{\varphi}(g_{\theta}(s)) \rangle)] \\ - \mathbb{E}_{p_X} [R_3(\langle \omega, h_{\varphi}^-(x) \rangle)] + \mathbb{E}_{p_S} [R_3(\langle \omega, h_{\varphi}^-(g_{\theta}(s)) \rangle)]$

Objective for generator: $\min_{\theta} \mathcal{V}_{SAN}(\theta; \varphi, \omega) = E_{p_S} [R_3(\langle \omega, h_{\varphi}(g_{\theta}(s)) \rangle)]$

 $()^{-}$: stop-gradient operator

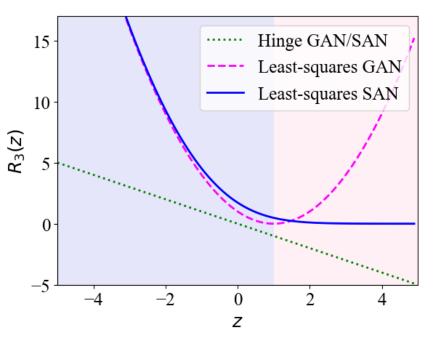
Most GAN-based vocoders rely on Least-squares GAN.

However, SAN requires R_3 to be a monotonically decreasing function.

In Least-squares GAN: $R_3(z) = (1-z)^2$ Not monotonic

In Least-squares SAN (ours): $\tilde{R}_3(z) = \zeta(1-z)^2$ Monotonic

where $\varsigma(a) = \ln(1 + e^a)$: softplus function



Experiments: large-scale vocoder training (1/2)

■ SAN-ify BigVGAN [Lee et al., ICLR 2023]

We trained a BigVGAN vocoder with **Least-squared SAN** on the LibriTTS dataset.

We followed their experimental setups, including data split, training hyperparameters, and evaluation protocol.

<u>Result</u>

M-STFT: spectral distance, **PESQ**: perceptual evaluation of speech quality, **MCD**: difference b/w mel cepstra **Periodicity**: difference b/w periodicity scores, **V/UV F1**: F1 score of voiced/unvoiced classification

Table 1. Objective and subjective evaluations on LibriTTS. Objective results are obtained from a subset of its dev set. Subjective evaluations are based on a 5-scale mean opinion score (MOS) with 95% confidence interval (CI) from a subset of its test set.

Model	M-STFT (\downarrow)	PESQ (†)	MCD (\downarrow)	Periodicity (\downarrow)	V/UV F1 (†)	MOS (†)
Ground truth	—	_	_	_	_	3.81 ± 1.89
BigVGAN (Lee et al. [20])	0.7997	4.027	0.3745	0.1018	0.9598	_
BigVGAN (our reproduction)	0.8382	3.862	<u>0.3711</u>	0.1155	0.9540	3.19 ± 2.21
BigVSAN	0.7881	<u>4.116</u>	0.3381	0.0935	0.9635	<u>3.24</u> ±1.95
BigVSAN w/ snakebeta activation	<u>0.7992</u>	4.120	0.4129	0.0924	0.9644	3.43 ±2.04

BigVSAN outperforms BigVGAN in terms of five objective metrics!

(*) We tried two activation functions for the generator

1) Snake activation: $f_{\alpha}(x) = x + \alpha^{-1} \sin^2(\alpha x)$

(Mentioned in the BigVGAN paper)

Sony Al

2) Snakebeta activation: $f_{\{\alpha,\beta\}}(x) = x + e^{-\beta} \sin^2(e^{\alpha}x)$

(Default in the BigVGAN repository)

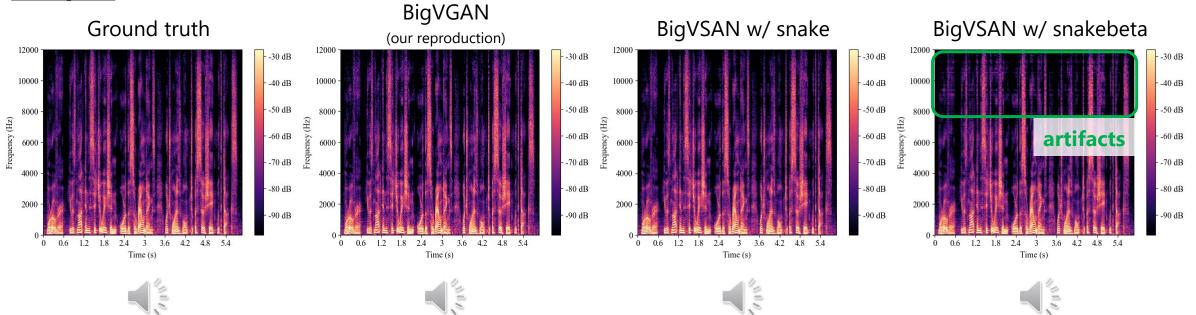
Experiments: large-scale vocoder training (2/2)

■ SAN-ify BigVGAN [Lee et al., ICLR 2023]

Table 1. Objective and subjective evaluations on LibriTTS. Objective results are obtained from a subset of its dev set. Subjective evaluations are based on a 5-scale mean opinion score (MOS) with 95% confidence interval (CI) from a subset of its test set.

Model	M-STFT (4)	PESQ (†)	$MCD(\downarrow)$	Periodicity (\downarrow)	V/UV F1 (†)	MOS (†)
Ground truth	—	_	_	_	_	3.81 ± 1.89
BigVGAN (Lee et al. [20])	0.7997	4.027	0.3745	0.1018	0.9598	_
BigVGAN (our reproduction)	0.8382	3.862	0.3711	0.1155	0.9540	3.19 ± 2.21
BigVSAN	0.7881	<u>4.116</u>	0.3381	0.0935	0.9635	<u>3.24</u> ±1.95
BigVSAN w/ snakebeta activation	<u>0.7992</u>	4.120	0.4129	0.0924	0.9644	3.43 ±2.04

Samples



Experiments: moderate-sized vocoder training

SAN-ify MelGAN and Parallel WaveGAN

We trained MelGAN and Parallel WaveGAN vocoders with Least-squared SAN

We used the <u>VocBench</u> framework [Albadawy et al., ICASSP 2023], which provides a shared environment where we can train/evaluate different vocoders on three public dataset: LJ speech, LibriTTS, and VCTK.

<u>Result</u>

Table 2. Results for Fréchet Audio Distance (FAD) evaluated on three datasets: LJ Speech, LibriTTS, and VCTK. Scores marked with † are reported in the VocBench paper [38].

Dataset	MelGAN [†]	MelSAN	Parallel WaveGAN [†]	Parallel WaveSAN
LJ Speech	1.51	1.34	0.92	0.84
LibriTTS	2.95	2.91	1.41	0.87
VCTK	1.76	1.69	1.22	0.76

SAN outperforms GAN in all combinations of vocoder model and dataset!

FAD: distance between the distribution of real recorded speech and that of synthesized speech (the lower, the better)

Conclusion

<u>Recap</u>

- We applied SAN (the improved GAN training framework) to GAN-based vocoders
 - SAN can find the projection that can distinguish real and generated data samples
 - We designed a new loss function for satisfying SAN's requirements
- We demonstrated SAN boosts the performance of existing vocoders, including BigVGAN

Future directions

Sony Al

- Incorporating the SAN training framework is orthogonal to most types of improvements of discriminator/generator architectures.
 - ⇒ SAN can boost other GAN-based vocoders: EVA-GAN [Liao+, arXiv, '24], MusicHiFi [Zhu+, arXiv, '24], etc.
- GAN is used as an auxiliary loss in other tasks
 - <u>Text-to-speech</u>: NaturalSpeech 3 [Ju+, arXiv, '24], StyleTTS 2 [Li+, NeurIPS '23], VITS [Kim+, ICML '21], etc.
 - Audio compression: DAC [Kumar+, NeurIPS '23], EnCodec [Défossez+, TMLR, '23], SoundStream [Zeghidour+, TASLP, '21], etc.

 \Rightarrow Applying SAN to these types of models is an interesting direction

