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Introduction: Text-to-speech (TTS) models

B Conventional TTS pipeline

Our focus
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Introduction: Deep generative models

B Trilemma of generative models
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Xiao et al,, “Tackling the Generative Learning Trilemma
with Denoising Diffusion GANs,” ICLR 2022.
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 Existing basic generative models compromise
between three key requirements
In image generation or text-to-audio generation,

 Diffusion models are popular because “quality” and
“diversity” are important. Many methods of
accelerating diffusion models are being studied.

In vocoding,

« "Diversity” is not so important because a vocoder is
required to synthesize a waveform corresponding to
a given mel-spectrogram

= GAN is still a reasonable choice
e.g., BIgVGAN, HiFi-GAN, Parallel WaveGAN, etc.



Problem in GANSs [Takida et al., ICLR 2024]

B Decompose a discriminator f(x) into f(x) = (w, h(x))
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In most cases, a discriminator can be decomposed into two parts:

a non-linear feature extractor h(x) and a linear projection layer w

Along the same direction

However,
most conventional GAN frameworks fail to find the projection

that can best distinguish real and generated data samples

So ny Al Takida et al., “SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer,” ICLR 2024 (to appear).



SAN (slicing adversarial network) [Takida et al., ICLR 2024]

@: feature extractor’s parameter
Conventional GAN 0: generator’'s parameter

Objective for discriminator: max Vean (@, 0;60) = Ep [R1 ({0, hyy (x)))] + Epg[R2 ({0, hyy (99 (5))))]

Objective for generator: meinVGAN 0;0,w) = EpS[Rg((w, h(p(ge(S))))] Il ﬂ

fo () = (hy, (x), @)

SAN The objective for discriminator is modified
Objective for discriminator: rg%)XVSAN (@, 0;0) =E, |Ri({(w™, hyp ()] + Epg[Ra ({0, Ry (g (s))))]

~Epy[Ra({@, hg ()] + Epg[Rs({@, g (96 ()]

Objective for generator:  minVsay (85 ¢, @) = Epg[Rs({w, hy (96 (5))))] ()™ : stop-gradient operator

SAN outperforms GAN in many combinations of architectures and image datasets.

SAN achieved SOTA results on several image generation benchmarks.

So ny Al Takida et al., "SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer,” ICLR 2024 (to appear). 5



SAN-ify (Apply SAN to) GAN-based vocoders

All we propose in this paper is on this slide

SAN
Objective for discriminator: maxVsay (@, w;0) =Ep [R1 ({07, hy(0)))] + Eps[R2 ({07, Ry (96 ())))]

—Epy [R3((@, hyy ()] + Epg[Rs((@, hip (96 ()]
()~ : stop-gradient operator

Objective for generator: min Vsan (6; ¢, ) = Epg |Rs({w, hyp (96 (s))))]

Most GAN-based vocoders rely on Least-squares GAN. 51\ e Hinge GAN/SAN |
—==- Least-squares GAN
However, SAN requires R; to be a monotonically decreasing function. 10, —— Least-squares SAN
N
In Least-squares GAN: R;(z) = (1 — 2)? Not monotonic € ST
~ 2 ) 0
In Least-squares SAN (ours): R3(z) = ¢(1 —2z)* Monotonic
5 | |
—4 -2 0 2 4

where ¢(a) = In(1 + e%): softplus function
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Experiments: large-scale vocoder training (1/2)

B SAN-ify BigVGAN |[Lee et al., ICLR 2023]
We trained a BigVGAN vocoder with Least-squared SAN on the LibriTTS dataset.
We followed their experimental setups, including data split, training hyperparameters, and evaluation protocol.

M-STFT: spectral distance, PESQ: perceptual evaluation of speech quality, MCD: difference b/w mel cepstra
RL““ Periodicity: difference b/w periodicity scores, V/UV F1: F1 score of voiced/unvoiced classification

Table 1. Objective and subjective evaluations on LibriTTS. Objective results are obtained from a subset of its dewv set. Subjective evaluations
are based on a 5-scale mean opinion score (MOS) with 95% confidence interval (CI) from a subset of 1ts test sel.

Model M-STFT () PESQ (1) MCD()) Periodicity () V/UV FI1 (1) MOS (1)
Ground truth - - - - - 3.814+1.89
BigVGAN (Lee et al. [20]) 0.7997 4.027 0.3745 0.1018 0.9598 -
BigVGAN (our reproduction) (.8382 3.862 0.3711 0.1155 0.9540 3.1942.21
BigVSAN 0.7881 4.116 0.3381 0.0935 0.9635 3.24141.95
BigVSAN w/ snakebeta activation (0.7992 4.120 0.4129 0.0924 0.9644 3.4312.04

BigVSAN outperforms BigVGAN in terms of five objective metrics!

(*) We tried two activation functions for the generator
1) Snake activation: f,(x) = x + a~ ! sin?(ax) (Mentioned in the BigVGAN paper)
Sony Al 2) Snakebeta activation: fi, g3 (x) = x + e~P sin?(e%x) (Default in the BigVGAN repository)



Experiments: large-scale vocoder training (2/2)

B SAN-ify BigVGAN |[Lee et al., ICLR 2023]

Resu It Table 1. Objective and subjective evaluations on LibriTTS. Objective results are obtained from a subset of its dewv set. Subjective evaluations
are based on a 5-scale mean opinion score (MOS) with 95% confidence interval (CI) from a subset of its test sel.

Model M-STFT (]) PESQ(T) MCD((]) Periodicity (J) V/UV F1 (1) MOS (1)
Ground truth — — — — — 3.811L1.89
BigVGAN (Lee et al. [20]) 0.7997 4.027 0.3745 0.1018 (.9598 —
BigVGAN (our reproduction) 0.8382 3.862 0.3711 0.1155 0.9540 3.1942.21
BigVSAN 0.7881 4.116 0.3381 0.0935 0.9635 3.2411.95
BigVSAN w/ snakebeta activation 0.7992 4.120 0.4129 0.0924 0.9644 3.4342.04

Samples

BigVGAN

Ground truth (our reproduction) BigVSAN w/ snake BigVSAN w/ snakebeta
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Experiments: moderate-sized vocoder training

B SAN-ify MelGAN and Parallel WaveGAN

We trained MelGAN and Parallel WaveGAN vocoders with Least-squared SAN

We used the VocBench framework [Albadawy et al., ICASSP 2023], which provides a shared environment
where we can train/evaluate different vocoders on three public dataset: LJ speech, LibriTTS, and VCTK.

Result

Table 2. Results for Fréchet Audio Distance (FAD) evaluated on
three datasets: LJ Speech, LibriTTS, and VCTK. Scores marked
with { are reported in the VocBench paper [38].

Dataset | MelGANT  MelSAN w!: :Z?:ﬂq ; J::Eg':; SAN outperforms GAN in all combinations
LJ Speech 151 1.34 0.92 0.84 of vocoder model and dataset!
LibriTTS 2.95 2.91 1.41 0.87

VCTK 1.76 1.69 1.22 0.76

FAD: distance between the distribution of real recorded speech and that of synthesized speech (the lower, the better)
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Conclusion

Recap
» We applied SAN (the improved GAN training framework) to GAN-based vocoders

« SAN can find the projection that can distinguish real and generated data samples
« We designed a new loss function for satisfying SAN’s requirements
« We demonstrated SAN boosts the performance of existing vocoders, including BigVGAN

Future directions

* Incorporating the SAN training framework is orthogonal to most types of improvements
of discriminator/generator architectures.

= SAN can boost other GAN-based vocoders: EVA-GAN [Liao+, arXiv, '24], MusicHiFi [Zhu+, arXiv, '24], etc.

* GAN is used as an auxiliary loss in other tasks

» Text-to-speech: NaturalSpeech 3 [Ju+, arXiv, '24], StyleTTS 2 [Li+, NeurlPS ‘23], VITS [Kim+, ICML '21], etc.

* Audio compression: DAC [Kumar+, NeurlPS '23], EnCodec [Défossez+, TMLR, ‘23], SoundStream [Zeghidour+, TASLP, '21], etc.

= Applying SAN to these types of models is an interesting direction
Sony Al pPplying yp g .
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