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Accessing Data While Preserving Privacy

▶ Accessing data has become a challenge [1, 2].

▶ Some datasets are private and can’t be shared (for example medical /

financial records, intellectual property, etc..).

▶ How can we benefit from data that isn’t shared with us?

▶ How can we scale up the learning to improve model accuracy and

diversity if we can only collect limited data?
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Federated Learning
▶ Agents perform local learning on a private model using private data.

▶ The agents exchange the local model parameters with the coordinating

node.

▶ The coordinating node aggregates the local model parameters and

broadcasts back a joint model.

Coordinating Node

Agent AgentAgent

L
oc

al
U

pd
at

es

L
oc

al
U

pd
at

es

L
oc

al
U

pd
at

es

G
lo

ba
lM

od
el

G
lo

ba
lM

od
el

G
lo

ba
lM

od
el

ICASSP 2024 3 / 23



Federated Averaging (FedAvg)

▶ The coordinating node averages the local parameter updates and construct

a joint model.

▶ There is no assumption on the distribution of the private datasets (iid /

non-iid).

▶ There is no assumption on the private model initializations.

▶ Each agent performs 1 or more gradient steps in the learning phase.
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Problem Formulation

▶ Consider a dataset D labeled with labels from a set C .

▶ Within this framework, the edge agents iteratively refine their model

parameters during the learning phase using this labeled dataset.

▶ The objective typically involves minimizing a function using a gradient

descent approach:

min
W

F (W ), where F (W ) :=
N∑

k=1

pkFk(W ), (1)

where N represents the number of participating agents,
∑

k pk = 1, and Fk

is the local empirical risk function for the k-th agent.

▶ Although pk = 1
N is common, varying these values can prioritize the risk of

certain agents.
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Backdoor Attacks on Federated Learning

▶ Assume that coordinated malicious agents are present in the network.

▶ The malicious agents are participating in the joint model learning stages.

▶ The malicious agents can broadcast incorrect model parameters to the

coordinating node.

▶ We have previously shown [3] that this malicious behavior forces the joint

model to converge to the malicious agents’ desired model.
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Backdoor Attacks on Federated Learning

Attack Types:

▶ Data Poisoning Attacks - A malicious agent modifies the labels during the

local learning stages, i.e. learning a new model using incorrect labels.

▶ Constant Output Attack - The malicious model constantly outputs the

same label.

▶ Label-Flipping Attack - The malicious model flips some or all of the labels.

▶ Model Poisoning Attacks - A malicious agent skips the learning stage and

broadcasts a previously learned model.

▶ Clean Label Attacks - A malicious agent modifies the data during the local

learning stages, leaving the labels untouched.
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Backdoor Attacks on Federated Learning

Coordinating Node

Agent AgentAttacker
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Attack Scheme

▶ Consider a scenario where some agents participating in federated learning

are malicious.

▶ Denote the set of attackers A ⊂ 1, . . . ,N and let na = |A|.

▶ We assume that 0 ≤ na < N/2, and nt = N − na is the number of

trustworthy agents.

▶ w.l.o.g we assume there is a single malicious agent, say agent a,

influencing the joint model training.

▶ Agent a’s goal is to manipulate the joint model training by transmitting

false parameters.

ICASSP 2024 9 / 23



Attack Scheme

▶ To reduce the statistical discrepancy between the malicious agents’

response and the other agents’ response, the attacker combines a false

model and a true one, thus adding a bias to the reported model.

▶ While the attacker’s main goal is to manipulate the joint model parameters

and prevent convergence to a steady optimal point, it also has a secondary

goal of remaining hidden and disguising the attack.
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Attack Scheme

▶ Let Wa,r (t) represent the model parameters that the attacker, posing as a

regular agent, would have updated by reliably updating the model

W (t − 1) provided by the coordinating agent with correct data at time t.

▶ Mark with Wa,f a pre-trained false model, classifying labels according to

the attacker’s desired attack scheme.

Building on this concept, the attack can be formally described as follows: A

malicious agent a responds at time t by sending

Wa(t) := g(t)Wa,r (t) + (1− g(t))Wa,f , (2)

where Wa(t) denotes the set of parameters transmitted by agent a at time t,

and g(t) is a non increasing series, varying from 1 to 0. While the monotonicity

of g(t) can be relaxed, it is essential for ensuring convergence to the attacker’s

desired model.
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Attacker Detection

Defense mechanisms against backdoor attacks in federated learning can take

place in different phases of the learning process:

▶ Pre Aggregation - The coordinating node aims to detect the attacker prior

to averaging it’s model parameters, thus allowing for trustworthy

parameters aggregation only at each stage of the learning process.

▶ In Aggregation - The coordinating node uses a more robust aggregation

technique while joint model updating procedure is conducted (such as

byzantine techniques).

▶ Post Aggregation - The coordinating node aims to repair the joint model

after completing the aggregation process.

The success of any detection method relies on the attacker being unfamiliar with

the detection method chosen or the timing and duration in which it takes place.
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Attacker Detection and Avoidance

▶ The coordinating agent compares the updates received from edge agents

over time.

▶ The private datasets are assumed to be identically distributed and

therefore if an agent is malicious and its model parameters update

differently, it will stand out and be considered malicious.

▶ To localize the attacker, we propose a low-complexity metric, computed

over time by the coordinating agent once every ∆T updates.

▶ When the coordinating agent suspects an edge agent to be an attacker, it

ignores its parameter updates for the next ∆T updates.
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Attacker Detection and Avoidance

Define the two hypotheses tested over the interval Ik = [(k − 1)∆T + 1, k∆T ]:

H0
j,k – agent j is trustworthy.

H1
j,k – agent j is malicious.

The proposed detection metric for a given interval Ik , computed over time for

agent j ’s model parameters, is given by

∆Uj,k :=
1

∆T

∑
t∈Ik

Uj(t)
H0

j

≶
H1

j

δu
√
N, (3)

Uj(t) := ∥∆Wj(t)−median{∆Wℓ(t) : ℓ ∈ {1, . . . ,N} \ {j}}∥∞. (4)

Here, the median is a coordinatewise operation, ∆Wj(t) := Wj(t)−Wj(t − 1),

and δu is a predefined threshold.
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Attacker Detection Success Rate
▶ The proposed detector facilitates continuous operation, unaffected by the

convergence time of the joint model.

▶ Let dk denote the outcome of applying (3) on interval Ik . This results in a

sequence of decisions d1, d2, . . ., where di = 1 if the examined agent

crosses the threshold, and di = 0 otherwise.

▶ At the conclusion of K∆T updates, the coordinating agent assesses each

edge agent’s behavior. If an edge agent’s average decision score over these

K intervals, calculated as 1
K

∑K
k=1 dk , exceeds 1/2, the agent’s input is

excluded for the next segment IK+1.

▶ Nonetheless, the coordinating agent continues to compute the statistics

(3) during this period and the agent is added back to the list of

trustworthy agents if

1

K

K∑
k=1

dk <
1

2
. (5)
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Attacker Detection Success Rate

The validity of this approach is encapsulated in the following lemma:

Lemma

Assume we set δu, ∆T such that for each k , PFA(Ik) < 1/2 < PD(Ik). Then,

with probability 1, there exists a sufficiently large k0 such that the presented

scheme (cf. (3)–(5)) ignores all the malicious agents after time k0∆T , while

ensuring that updates from all trustworthy agents are incorporated beyond this

time.

The proof of Lemma 1 is based on a sequence of decisions where for each

interval Ik of length ∆T the detector is applied to obtain a decision dk . Then a

majority among all prior decisions is used to decide whether to disconnect the

agent. By the assumption PFA(Ik) <
1
2 < PD(Ik) and the Borel Cantelli lemma

the proof follows.
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Simulations

The MIT-BIH Arrhythmia dataset
▶ The MIT-BIH Arrhythmia dataset [4, 5] is a sample set of ECG strips,

derived from over 4000 long-term Holter recordings (48 subjects aged 23

to 89) that were obtained by the Beth Israel Hospital Arrhythmia

Laboratory between 1975 and 1979. The MIT-BIH includes 17 labels

including ’Supraventricular tachyarrhythmia’ (SVTA), ’Idioventricular

rhythm’ (IVT), and many more. An example taken from the MIT-BIH

dataset can be seen in Figure 1.
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MIT-BIH Arrhythmia Constant Output
Attack

Figure 1: Example (10s) of annotations in MIT-BIH database [4].
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MIT-BIH Arrhythmia Constant Output
Attack

▶ In this example, the agents are attempting to learn a classifier for the ECG

MIT-BIH dataset, while the attacker (w.l.o.g marked as agent 1) is aiming

to inject a model that consistently outputs ’Supraventricular

tachyarrhythmia’ (SVTA).

▶ In this example we have 4 trustworthy agents in the network, the dataset is

divided between the agents in a non-iid manner such that each agent

2, 3, 4, 5 receives records from 10 different subjects, with no overlap.

▶ Note that each record is individually labeled thus each agent may be

exposed to all 17 labels.
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MIT-BIH Arrhythmia Constant Output
Attack

Figure 2: Classification Error Without Detection (100 Experiments)
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MIT-BIH Arrhythmia Constant Output
Attack

Figure 3: Classification Error with Detection (100 Experiments).
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Conclusions

▶ We have presented a robust federated learning algorithm that can operate

in the presence of data injection attacks.

▶ We have provided conditions for the identification of malicious agents.

▶ We have demonstrated the performance of the proposed technique on

various attacks.

▶ Detailed proofs of the lemmas as well as bounds on the attacker detection

probability and the false-alarm probability are presented in an extended

version of this work.
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