HUBERTOPIC: ENHANCING SEMANTIC REPRESENTATION OF HUBERT THROUGH SELF-SUPERVISION UTILIZING TOPIC MODEL

Takashi Maekaku¹, Jiatong Shi², Xuankai Chang², Yuya Fujita¹, Shinji Watanabe², ¹LY Corporation, ²Carnegie Mellon University

Introduction

Implicit Challenge:

- HuBERT's masked prediction task may not effectively utilize global semantic information Proposed Solution:
- Enhance HuBERT's representation by utilizing topic labels generated by LDA
- Incorporate a topic classification task into HuBERT, which allows additional global semantic information to be learned

System Description

HUBERT

• Employ the following masked prediction loss

$$\mathcal{L}_{ ext{MP}} = -\sum_{d} \sum_{t \in \mathcal{M}^d} \log p_f(z_t^d | ilde{X}^d)$$

Proposed Method (HuBERTopic)

- Apply LDA to pseudo-labels to obtain per-utterance topic distributions
- For each *d*, assign the topic with the highest contribution in its distribution
- Add a topic label classification task to HuBERT

$$\mathcal{L}_{\mathrm{TC}} = -\sum_{d} \sum_{k} \tau_{k}^{d} \log(\mathrm{softmax}(c_{\mathrm{cls}}^{d})_{k}))$$

k: Index of topic dimension K $c_{ ext{cls}} \in \mathbb{R}^{K}, \, au_{k}^{d}$: One-hot representation of topic label

• Total loss is calculated as a weighted sum of L_{MP} and L_{TC}

Examples of global semantic

information in speech

Age

Theme

Speaker

Emotion

$\mathcal{L} = (1 - \rho)\mathcal{L}_{MP} + \rho\mathcal{L}_{TC}$

 $\rightarrow \rho$ was set to 0.01 in the following experiments

Experiments

Results

- ASR (Fig.1)
- The performance of HuBERTopic outperformed the baseline
 - The topic classification task enhanced semantic information useful for the ASR task
- Improvement was less significant in the 96oh scenario
 - Tuning of K and the relative benefits of the auxiliary task versus more data need further investigation
- SUPERB (Fig. 2)
- HuBERTopic shows overall improvement, with notable gains in PR and SD

Likely due to enhanced phonetic and speaker discrimination

Training	Model	K(Num of topics) (0itr/1itr)		WER(↓)						
Data (SSL)				dev-clean	dev-o	ther te	est-clear	n tes	test-other	
LS-100h	HuBERT	-		17.1	33.5	1	7.3	35.	3	
	HuBERTopic	30/200		16.1	32.9	1	6.6	34.	1	
LS-960h	HuBERT	_		7.4	14.2	7	.4	14.	2	
	HuBERTopic	30/30		7.2	14.1	7	.4	13.	7	
Fig. 1 ASR results									_	
Training Data (SSL)	Model	K (0itr/1itr)	PR(↓) ER(↑)	IC(↑)	SID(↑)	SD(↓)	SF(↑)	KS(↑)	SE(↑
LS-100h	HuBERT	_	13.89	60.24	88.72	60.48	8.86	80.62	94.22	2.48
	HuBERTopic	30/30	12.97	60.92	90.64	61.82	8.59	81.05	94.87	2.50
LS-960h	HuBERT	_	5.04	64.12	97.57	79.34	7.49	88.61	96.04	2.53
	HuBERTopic	30/30	4.83	64.10	97.68	78.98	6.93	88.76	95.26	2.53
	HuBERTopic	150/1000	4.84	63.61	98.10	79.21	7.07	88.79	95.81	2.55
	Fig. 2 SUPERB results									

Topic Analysis

• Calculate purity scores with various attributes (Fig.3)

Purity
$$(\Omega, \Lambda) = \frac{1}{N} \sum_{k} \max_{j} |\omega_k \cap \lambda_j|$$

Number of data in ω_k most frequently assigned to λ_j

- $\Omega = \{\omega_1, \omega_2, \cdots, \omega_K\}$: a set of attribute labels $\Lambda = \{\lambda_1, \lambda_2, \cdots, \lambda_J\}$: a set of topic labels
- HuBERTopic yields higher scores than random cases
 - Indicate that topic label contains

these semantic information

	Attribute	K	Purity				
_			Proposed	Random			
	Gender	2	0.978	0.503			
	Speaker	30	0.075	0.011			
	Book	30	0.081	0.024			
	Chapter 30		0.061	0.009			

Fig. 3 Purity between the topic label and each attribute label