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1. Central Research Question

2. Problem Setup
• Total K clients, each equipped with its own dataset

Sk = (xi, yi)ni=1 ⊆ (X ,Y)n.

• Let ℓ : Z × W → R+ be a given loss function and

hk ∈ H is a stochastic estimator on client k where H

is the hypothesis class.

• In the PAC-Bayesian framework, each client holds a

tailored prior distribution Pk. The goal is to optimize

the posterior distribution Qk ∈ H.

• Define the population risk :

L(Q1, . . . , QK) !
1

K

K∑

k=1

E
hk∼Qk

E
(xk,yk)∼Dk

[ℓ(hk(xk), yk)],

and the empirical risk :

L̂ (Q1, . . . , QK) !
1

nK

K∑

k=1

E
hk∼Qk

n∑

i=1

ℓ (hk (xk,i) , yk,i) .

• Federated learning procedure: each client maintains

its prior Pk locally, while sharing the posterior; the

posteriors will be aggregated as Q̄ =
∏K

k=1Q
p(k)
k .

– Intuition of this aggregation: minh L(h) = minh∑K
k=1 p(k)Lk(h) = maxh ln

∏K
k=1 p (h | Dk)

p(k).

3. Main Theorem
Theorem 1 (Federated PAC-Bayesian bound) For

any δ ∈ (0, 1], assume the loss function ℓ(·, ·) is bounded
in [0, C], the following inequality holds uniformly for all

posterior distributions Q and for any δ ∈ (0, 1),

P
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{

∀Q1, . . . ,QK ,L(Q1, . . . ,QK)≤ L̂(Q1, . . . ,QK)

+
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k=1

p(k)DKL(Qk∥Pk)+log1

δ

λ
+

λC2

8Kn

}

>1−δ.

5. Numerical Experiments

Corollary 1 (The choice of λ) Suppose λ ∈ Ξ := {0,
. . . , ξ} and | · | denotes the cardinality of a set. For any

δ ∈ (0, 1) and a properly chosen λ, with probability at

least 1− δ,

L(Q1, . . . , QK) ≤ L̂(Q1, . . . , QK)

+ C

√

∑K

k=1
p(k)DKL(Qk∥Pk) + log |Ξ|

δ

2Kn
.

• Optimal value of the hyper-parameter λ:

λ∗ =

√

√

√

√8Kn

(

K
∑

k=1

p(k)DKL(Qk∥Pk) + log
|Ξ|

δ

)

/C.

4. FedPB: Iteratively Optimizing Upper Bound
Local objective function: J (Qk) = λLk+p(k)DKL(Qk∥Pk),
where Lk = E

hk∼Qk

1

n

∑n
i=1 ℓ (hk (xk,i) , yk,i).

• Phase 1 (Optimize the posterior):

Q̂t+1
k = argmin

Qk

J (Qk),

yielding the solution

dQ̂t+1
k

dP t
k

(h) =
exp (−λℓ (h, zi))

Eh∼P t
k
[exp (−λℓ (h, zi))]

.

• Phase 2 (Optimize the prior):

P̂ t+1
k = Qt

k.

Table 1: Model accuracy (%) for the data-independent prior and data-dependent
prior in three data-generating scenarios.

Method
MedMNIST CIFAR-10

Balanced Unbalanced Dirichlet Balanced Unbalanced Dirichlet

Data-independent 53.47± 1.12 49.44± 1.10 55.24± 6.92 50.89± 0.62 47.19± 0.92 57.93± 0.55
Data-dependent 77.10± 4.25 77.34± 3.42 77.48± 4.75 84.41± 0.94 79.39± 0.56 86.11± 0.53
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• Data across different clients is non-identically and
independently distributed (non-i.i.d.) in FL.

• How to deal with clients that have different prior
distributions and posterior distributions?

• What is the generalization performance when clients
have non-i.i.d. data and different prior distributions?

Our code


