UNIVERSITY of WASHINGTON

The Rao, Wald, and Likelihood-Ratio Tests under Generalized Self-Concordance

Lang Liu, Zaid Harchaoui

Department of Statistics, University of Washington

Overview

- We recover the asymptotic equivalence of the Rao, Wald, and likelihood-ratio tests from a nonasymptotic viewpoint.
- We characterize the critical sample size beyond which the equivalence holds asymptotically under the **null** hypotheses.
- We also analyze the statistical power under both the fixed and alternative hypotheses.
- We establish an estimation bound that matches the **misspecified Cramér-Rao** lower bound.

Goodness-of-Fit Testing

Problem. Let $Z \sim \mathbb{P}$ and $\mathcal{P}_{\Theta} := \{P_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$. Assume there exists $\theta_{\star} \in \Theta$ such that $\mathbb{P} = P_{\theta_{\star}}$. Given an i.i.d. sample $\{Z_i\}_{i=1}^n$, we want to infer properties of θ_{\star} via

 $\mathcal{H}_0: \theta_\star = \theta_0 \leftrightarrow \mathcal{H}_1: \theta_\star \neq \theta_0.$

• A test statistic $T := T(Z_1, \ldots, Z_n)$ and a prescribed critical value t_n . • **Reject** the null \mathcal{H}_0 if $T > t_n$.

Main Results

Type I error rate. Let $\theta_{\star} = \theta_0$. We have, with probability at least $1 - \delta$,

$$nT_{Rao} \lesssim d + \log \frac{e}{\delta}$$
, whenever $n \gtrsim \log \frac{2d}{\delta}$.

Additionally, with $\lambda_{\star} := \lambda_{\min}(H_{\star})$,

$$nT_{Wald}, nT_{LR} \lesssim d + \log \frac{e}{\delta}, \quad \text{whenever } n \gtrsim \log \frac{2d}{\delta} + d \frac{R^2}{\lambda_{\star}^{3-\nu}}$$

• Demonstrate that the three tests have a tail behavior that is governed by a χ^2_d distribution. • Characterize the critical sample size enough to enter the asymptotic regime. **Statistical power.** Let $\theta_{\star} \to_{n \to \infty} \theta_0$. Let $t_n(\alpha)$ be the $(1 - \alpha)$ -quantile of χ^2_d . Let $\Omega(\theta) :=$ $G(\theta)^{\frac{1}{2}}H(\theta)^{-1}G(\theta)^{\frac{1}{2}}$ and $h(\tau) := \min\{\tau^2, \tau\}$. The following statements hold for sufficiently large n. • Let $\tau_n \simeq \|H(\theta_0)^{1/2}(\theta_\star - \theta_0)\|^2$. We have

 $\Pr(T_{\mathsf{Rao}} > t_n(\alpha)) \begin{cases} \leq 2de^{-Cn} + e^{-Ch(\|\Omega(\theta_0)\|_2^{-1})} & \text{if } \|H(\theta_0)^{1/2}(\theta_\star - \theta_0)\| = O(n^{-1/2}) \\ \geq 1 - 2de^{-Cn} - e^{-Ch(n\tau_n\|\Omega(\theta_0)\|_2^{-1})} & \text{if } \|H(\theta_0)^{1/2}(\theta_\star - \theta_0)\| = \omega(n^{-1/2}). \end{cases}$

• Type I error rate $Pr(T > t_n | \mathcal{H}_0)$ and statistical power $Pr(T > t_n | \mathcal{H}_1)$. **Notation.** Loss function $\ell(\theta; z) := -\log P_{\theta}(z)$. • Population risk $L(\theta) := \mathbb{E}[-\log P_{\theta}(Z)]$ and empirical risk $L_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i)$. • Empirical risk minimizer $\theta_n := \arg \min_{\theta \in \Theta} L_n(\theta)$. • Gradient $S(\theta; z) := \nabla_{\theta} \ell(\theta; z)$, $S(\theta) := \mathbb{E}[S(\theta; Z)] = \nabla_{\theta} L(\theta)$, and $S_n(\theta) := \frac{1}{n} \sum_{i=1}^n S(\theta; Z_i)$. • Hessian $H(\theta; z) := \nabla_{\theta}^2 \ell(\theta; z)$, $H(\theta) := \mathbb{E}[H(\theta; Z)]$, and $H_n(\theta) := \frac{1}{n} \sum_{i=1}^n H(\theta; Z_i)$. Three classical goodness-of-fit tests. • Rao test— $T_{Rao} := S_n(\theta_0)^\top H_n(\theta_0)^{-1} S_n(\theta_0).$ • Wald test— $T_{Wald} := (\theta_n - \theta_0)^\top H_n(\theta_n)(\theta_n - \theta_0).$ • The likelihood-ratio test— $T_{LR} := 2[L_n(\theta_0) - L_n(\theta_n)].$ Asymptotic equivalence of the three tests. • Asymptotic distribution. $\circ \sqrt{n}S_n(\theta_0) \rightarrow_d \mathcal{N}_d(0, G(\theta_0))$ under \mathcal{H}_0 . \circ Well-specified model, i.e., $\mathbb{P} \in \mathcal{P}_{\Theta}$, implies that $G(\theta_0) = H(\theta_0)$. $\circ nT_{Rao} \rightarrow_d \chi_d^2$ under \mathcal{H}_0 . • Asymptotic equivalence. $\circ S_n(\theta_0) = S_n(\theta_0) - S_n(\theta_n) = H_n(\overline{\theta}_n)(\theta_0 - \theta_n).$ $\circ T_{\mathsf{Rao}} = (\theta_n - \theta_0)^\top H_n(\theta_n)(\theta_n - \theta_0) + o_p(1) = T_{\mathsf{Wald}} + o_p(1).$ $\circ T_{LR} = 2S_n(\theta_n)(\theta_0 - \theta_n) + (\theta_0 - \theta_n)^\top H_n(\bar{\theta}_n)(\theta_0 - \theta_n) = T_{Wald} + o_p(1).$

Prelimilaries

Dikin ellipsoid. A Dikin ellipsoid at θ_{\star} of radius r

 $\Theta_r(\theta_\star) := \{ \theta \in \Theta : \|H_\star^{1/2}(\theta - \theta_\star)\| < r \}.$

• Let $\tau'_n \simeq \|H(\theta_0)^{1/2}(\theta_\star - \theta_0)\|^2$. We have

 $\Pr(T_{\mathsf{Wald}}, T_{\mathsf{LR}} > t_n(\alpha)) \begin{cases} \leq 2nde^{-C(\frac{\lambda_{\star}^{3-\nu_n}}{R^2d})^{\frac{1}{\nu-1}}} + e^{-Ch(\|\Omega(\theta_{\star})\|_2^{-1})} & \text{if } \|H(\theta_0)^{1/2}(\theta_{\star} - \theta_0)\| = O(n^{-1/2}) \\ \geq 1 - 2nde^{-C(\frac{\lambda_{\star}^{3-\nu_n}}{R^2d})^{\frac{1}{\nu-1}}} - e^{-Ch(n\tau_n'\|\Omega(\theta_{\star})\|_2^{-1})} & \text{if } \|H(\theta_0)^{1/2}(\theta_{\star} - \theta_0)\| = O(n^{-1/2}). \end{cases}$

To summarize,

• If $||H(\theta_0)^{1/2}(\theta_{\star} - \theta_0)|| = O(n^{-1/2})$, the power is asymptotically upper bounded by a constant. • If $||H(\theta_0)^{1/2}(\theta_{\star} - \theta_0)|| = \omega(n^{-1/2})$, the power **tends to one** at rate $O(\exp(-n||H(\theta_0)^{1/2}(\theta_{\star} - \theta_0)||^2))$.

Estimation Bound under Model Misspecification

Estimation bound. Assume $\mathbb{P} \notin \mathcal{P}_{\Theta}$ and let $\theta_{\star} := \arg \min_{\theta \in \Theta} L(\theta)$. It holds that

 $\left\| H_n(\theta_n)^{1/2}(\theta_n - \theta_\star) \right\|^2 \lesssim \frac{d_\star}{n} + \frac{\|\Omega(\theta_\star)\|_2}{n} \log \frac{e}{\lambda},$

where $d_{\star} := \mathbf{Tr}(\Omega(\theta_{\star}))$ is the effective dimension. • When the model is well-specified, $d_{\star} = d$ and $\|\Omega(\theta_{\star})\|_2 = 1$. • When the model is **misspecified**,

	Eigen	decay	Dimension Depend	lency	Ratio
	G_{\star}	H_{\star}	d_{\star}	d	d_{\star}/d
Poly-Poly	i^{-lpha}	i^{-eta}	$d^{(eta-lpha+1)ee 0}$	d	$d^{(eta-lpha)ee(-1)}$
Poly-Exp	i^{-lpha}	$e^{-\nu i}$	$d^{1-lpha} e^{ u d}$	d	$d^{-lpha} e^{ u d}$
Exp-Poly	$e^{-\mu i}$	i^{-eta}	1	d	d^{-1}
			$d \hspace{0.1 if} \mu = u$		$1 \ \text{if} \ \mu = \nu \\$
Exp-Exp	$e^{-\mu i}$	$e^{-\nu i}$	1 if $\mu > \nu$	d	d^{-1} if $\mu > \nu$
			$e^{(\nu-\mu)d}$ if $\mu < \nu$		$d^{-1}e^{(u-\mu)d}$ if $\mu < u$

• The shape of a **Euclidean ball** is **always the same**.

• The shape of a **Dikin ellipsoid** is **adapted to the geometry** near the optimum.

Generalized self-concordance. Let f be convex, R > 0, and $\nu > 0$. We say f is (R, ν) -generalized self-concordant if (on a high level)

 $\left\|\nabla^3 f(x)\right\| \lesssim R \left\|\nabla^2 f(x)\right\|^{\nu}.$

We give two examples of losses as functions of parameters.

• For linear regression, its loss is (R, ν) -generalized self-concordant for any R > 0 and $\nu > 0$. • For logistic regression with $||X||_2 \leq_{a.s.} M$, its loss is (2M, 2)-generalized self-concordant.

	Strong convexity	Self-concordance	
lessian lower bound lessian varying rate	Global No control	Local Slow	
Strong convexity		Self-concordan	

The bound matches the Cramér-Rao lower bound. • d_{\star} can be approximated by $d_n := \mathbf{Tr}(G_n(\theta_n)^{1/2}H_n(\theta_n)^{-1}G_n(\theta_n)^{1/2}).$ • How well does d_n approximate d_{\star} ?

Examples

Generalized linear models. Consider the statistical model

Concentration of Hessian. A key result towards deriving our bounds is

$[1 - c_n(\delta)]H(\theta) \preceq H_n(\theta) \preceq [1 + c_n(\delta)]H(\theta)$

with probability at least $1 - \delta$, where $c_n(\delta) = O(\sqrt{\log(d/\delta)}/n)$.

 $p_{\theta}(y \mid x) \sim \frac{\exp\left[\theta^{\top} t(x, y) + h(x, y)\right]}{\int \exp\left[\theta^{\top} t(x, \bar{y}) + h(x, \bar{y})\right] \mathrm{d}\mu(\bar{y})} \mathrm{d}\mu(y)$

with $||t(X,Y)||_2 \leq_{a.s.} M$. It induces the loss function

$$\ell(\theta; z) := -\theta^{\top} t(x, y) - h(x, y) + \log \int \exp\left[\theta^{\top} t(x, \bar{y}) + h(x, \bar{y})\right] d\mu(\bar{y}),$$

which is (2M, 2)-generalized self-concordant. Score matching with exponential families. Consider an exponential family with density $\log p_{\theta}(z) =$ $\theta^{\top}t(z) + h(z) - \Lambda(\theta)$. The score matching loss is

 $\ell(\theta; z) = \frac{1}{2} \theta^{\top} A(z) \theta - b(z)^{\top} \theta + c(z) + const,$

where $A(z) := \sum_{k=1}^{p} \frac{\partial t(z)}{\partial z_k} (\frac{\partial t(z)}{\partial z_k})^{\top}$ is positive semi-definite,

$$b(z) := \sum_{k=1}^{p} \left[\frac{\partial^2 t(z)}{\partial z_k^2} + \frac{\partial h(z)}{\partial z_k} \frac{\partial t(z)}{\partial z_k} \right], \text{ and } c(z) := \sum_{k=1}^{p} \left[\frac{\partial^2 h(z)}{\partial z_k^2} + \left(\frac{\partial h(z)}{\partial z_k} \right)^2 \right]$$

It is generalized self-concordant for all $\nu \geq 2$ and $R \geq 0$.