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•We recover the asymptotic equivalence of the Rao, Wald, and likelihood-ratio tests from a non-
asymptotic viewpoint.
•We characterize the critical sample size beyond which the equivalence holds asymptotically under

the null hypotheses.
•We also analyze the statistical power under both the fixed and alternative hypotheses.
•We establish an estimation bound that matches the misspecified Cramér-Rao lower bound.

Overview

Problem. Let Z ∼ P and PΘ := {Pθ : θ ∈ Θ ⊂ Rd}. Assume there exists θ? ∈ Θ such that P = Pθ?.
Given an i.i.d. sample {Zi}ni=1, we want to infer properties of θ? via

H0 : θ? = θ0 ↔ H1 : θ? 6= θ0.

• A test statistic T := T (Z1, . . . , Zn) and a prescribed critical value tn.
•Reject the null H0 if T > tn.
•Type I error rate Pr(T > tn | H0) and statistical power Pr(T > tn | H1).

Notation. Loss function `(θ; z) := − logPθ(z).
•Population risk L(θ) := E[− logPθ(Z)] and empirical risk Ln(θ) := 1

n

∑n
i=1 `(θ;Zi).

•Empirical risk minimizer θn := arg minθ∈ΘLn(θ).
•Gradient S(θ; z) := ∇θ`(θ; z), S(θ) := E[S(θ;Z)] = ∇θL(θ), and Sn(θ) := 1

n

∑n
i=1 S(θ;Zi).

•Hessian H(θ; z) := ∇2
θ`(θ; z), H(θ) := E[H(θ;Z)], and Hn(θ) := 1

n

∑n
i=1H(θ;Zi).

Three classical goodness-of-fit tests.
•Rao test—TRao := Sn(θ0)

>Hn(θ0)
−1Sn(θ0).

•Wald test—TWald := (θn − θ0)
>Hn(θn)(θn − θ0).

•The likelihood-ratio test—TLR := 2[Ln(θ0)− Ln(θn)].
Asymptotic equivalence of the three tests.
• Asymptotic distribution.
◦
√
nSn(θ0)→d Nd(0, G(θ0)) under H0.

◦Well-specified model, i.e., P ∈ PΘ, implies that G(θ0) = H(θ0).
◦ nTRao→d χ

2
d under H0.

• Asymptotic equivalence.
◦ Sn(θ0) = Sn(θ0)− Sn(θn) = Hn(θ̄n)(θ0 − θn).
◦ TRao = (θn − θ0)

>Hn(θn)(θn − θ0) + op(1) = TWald + op(1).
◦ TLR = 2Sn(θn)(θ0 − θn) + (θ0 − θn)>Hn(θ̄n)(θ0 − θn) = TWald + op(1).

Goodness-of-Fit Testing

Dikin ellipsoid. A Dikin ellipsoid at θ? of radius r

Θr(θ?) := {θ ∈ Θ : ‖H1/2
? (θ − θ?)‖ < r}.

• The shape of a Euclidean ball is always the same.
• The shape of a Dikin ellipsoid is adapted to the geometry near the optimum.
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Generalized self-concordance. Let f be convex, R > 0, and ν > 0. We say f is (R, ν)-generalized
self-concordant if (on a high level) ∥∥∇3f (x)

∥∥ . R
∥∥∇2f (x)

∥∥ν .
We give two examples of losses as functions of parameters.
• For linear regression, its loss is (R, ν)-generalized self-concordant for any R > 0 and ν > 0.
• For logistic regression with ‖X‖2 ≤a.s. M , its loss is (2M, 2)-generalized self-concordant.

Strong convexity Self-concordance
Hessian lower bound Global Local
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Concentration of Hessian. A key result towards deriving our bounds is

[1− cn(δ)]H(θ) � Hn(θ) � [1 + cn(δ)]H(θ)

with probability at least 1− δ, where cn(δ) = O(
√

log (d/δ)/n).

Prelimilaries

Type I error rate. Let θ? = θ0. We have, with probability at least 1− δ,

nTRao . d + log
e

δ
, whenever n & log

2d

δ
.

Additionally, with λ? := λmin(H?),

nTWald, nTLR . d + log
e

δ
, whenever n & log

2d

δ
+ d

R2

λ3−ν
?

.

•Demonstrate that the three tests have a tail behavior that is governed by a χ2
d distribution.

• Characterize the critical sample size enough to enter the asymptotic regime.
Statistical power. Let θ? →n→∞ θ0. Let tn(α) be the (1 − α)-quantile of χ2

d. Let Ω(θ) :=

G(θ)
1
2H(θ)−1G(θ)

1
2 and h(τ ) := min{τ 2, τ}. The following statements hold for sufficiently large n.

• Let τn �
∥∥H(θ0)

1/2(θ? − θ0)
∥∥2. We have

Pr(TRao > tn(α))

{
≤ 2de−Cn + e−Ch(‖Ω(θ0)‖−12 ) if

∥∥H(θ0)
1/2(θ? − θ0)

∥∥ = O(n−1/2)

≥ 1− 2de−Cn − e−Ch(nτn‖Ω(θ0)‖−12 ) if
∥∥H(θ0)

1/2(θ? − θ0)
∥∥ = ω(n−1/2).

• Let τ ′n �
∥∥H(θ0)

1/2(θ? − θ0)
∥∥2. We have

Pr(TWald, TLR > tn(α))

≤ 2nde−C(
λ3−ν? n

R2d
)

1
ν−1

+ e−Ch(‖Ω(θ?)‖−12 ) if
∥∥H(θ0)

1/2(θ? − θ0)
∥∥ = O(n−1/2)

≥ 1− 2nde−C(
λ3−ν? n

R2d
)

1
ν−1 − e−Ch(nτ ′n‖Ω(θ?)‖−12 ) if

∥∥H(θ0)
1/2(θ? − θ0)

∥∥ = ω(n−1/2).

To summarize,
• If
∥∥H(θ0)

1/2(θ? − θ0)
∥∥ = O(n−1/2), the power is asymptotically upper bounded by a constant.

• If
∥∥H(θ0)

1/2(θ? − θ0)
∥∥ = ω(n−1/2), the power tends to one at rate O

(
exp(−n‖H(θ0)

1/2(θ?−θ0)‖2)
)

.

Main Results

Estimation bound. Assume P /∈ PΘ and let θ? := arg minθ∈ΘL(θ). It holds that∥∥Hn(θn)1/2(θn − θ?)
∥∥2

.
d?
n

+
‖Ω(θ?)‖2

n
log

e

δ
,

where d? := Tr(Ω(θ?)) is the effective dimension.
•When the model is well-specified, d? = d and ‖Ω(θ?)‖2 = 1.
•When the model is misspecified,

The bound matches the Cramér-Rao lower bound.
• d? can be approximated by dn := Tr(Gn(θn)1/2Hn(θn)−1Gn(θn)1/2).
•How well does dn approximate d??
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Estimation Bound under Model Misspecification

Generalized linear models. Consider the statistical model

pθ(y | x) ∼ exp [θ>t(x, y) + h(x, y)]∫
exp [θ>t(x, ȳ) + h(x, ȳ)]dµ(ȳ)

dµ(y)

with ‖t(X, Y )‖2 ≤a.s. M . It induces the loss function

`(θ; z) := −θ>t(x, y)− h(x, y) + log

∫
exp [θ>t(x, ȳ) + h(x, ȳ)]dµ(ȳ),

which is (2M, 2)-generalized self-concordant.
Score matching with exponential families. Consider an exponential family with density log pθ(z) =
θ>t(z) + h(z)− Λ(θ). The score matching loss is

`(θ; z) =
1

2
θ>A(z)θ − b(z)>θ + c(z) + const,

where A(z) :=
∑p

k=1
∂t(z)
∂zk

(∂t(z)
∂zk

)> is positive semi-definite,

b(z) :=

p∑
k=1

[
∂2t(z)

∂z2
k

+
∂h(z)

∂zk

∂t(z)

∂zk

]
, and c(z) :=

p∑
k=1

[
∂2h(z)

∂z2
k

+
(∂h(z)

∂zk

)2
]
.

It is generalized self-concordant for all ν ≥ 2 and R ≥ 0.

Examples


