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Overview Main Results

e We recover the asymptotic equivalence of the Rao, Wald, and likelihood-ratio tests from a non- Type | error rate. Let 0, = 6,. We have, with probability at least 1 — 9,

asymptotic viewpoint.
e \We characterize the critical sample size beyond which the equivalence holds asymptotically under nTh., < d -+ logg whenever 7, > 1Og2_d_

the null hypotheses. 0 o ~TRS
e We also analyze the statistical power under both the fixed and alternative hypotheses. Additionally, with A, := A (H.)
e \We establish an estimation bound that matches the misspecified Cramér-Rao lower bound. | |

2d | R
nTwaid, N1 1R S d + logg, whenever n =~ logF + d}\g_y.
e Demonstrate that the three tests have a tail behavior that is governed by a \- distribution.
GOOdness-Of-Fit Testing e Characterize the critical sample size enough to enter the asymptotic regime.
] _ Statistical power. Let 0, —, , 6. Let ¢,(«) be the (1 — «)-quantile of x3. Let Q(f) :=

Problem. let Z ~ P and Pg := {5 : 0 € © C R}. Assume there exists 0, O such that P’ = F,. G(@)%H(ﬁ)_lG(ﬁ)% and A(7) := min{7°, 7}. The following statements hold for sufficiently large n.

Given an i.i.d. sample {Z;}!" |, we want to infer properties of 6, via ,
o Let 7, < ||H(6)V(0, — 6))||". We have
Hoi(g*:(go%)?{li@*#eg.
< 2de=Cn + ¢=ONIO01) £ (| 10,26, — 60)

e A test statistic T :=T(Z;,...,Z,) and a prescribed critical value ¢,. Pr(Th. > t o H
1“( Rao n(Oé)) > 1 — Qde—C’n . e—Ch(nT,,,HQ(QO)HQ ) if HH(@O>1/2(9* o QO)H _ w(n—l/Q).

e Reject the null Hy if T > ¢,
e Type | error rate Pr(T > t, | Hy) and statistical power Pr(T > t, | H,).

Notation. Loss function /(0; z) := —log Py(z2). olet 7/ = HH(HO)W(@* — (90)H2. We have

e Population risk L(0) := E[— log Py(Z)] and empirical risk L,(0) := 2> " £(6; Z;). P

e Empirical risk minimizer 6,, := argming.g L, (). Pr(Toag, Tir > £(a0)) < Inde ¢ ima ):ilynJrj—Oh(\lQ(e*)Hg ) 71 if || H (007200, — 00)|| = O(n 172
e Gradient S(0; z) := Vyl(0; 2), S(0) :=E[S(0; Z)] = VoL(f), and S,(0) :=+>"" | S(0; Z,). > 1 — 2nde Ca )T — e CROICOILDif || H(0)Y2(6, — 0p)|] = w(in?)
e Hessian H(0;z) .= V3{(0;z), H(0) :=E[H(0; Z)], and H,(0) :==<>""  H(6; Z,). |

Three classical goodness-of-fit tests. To summarize,

o Rao test—Tr, = Sn(00) T Hi(60) " S,(60). o |f HH(90>1/2<(9* — 90)|| = O(n~"?), the power is asymptotically upper bounded by a constant.

o Wald test—T g := (0, — 00) T H,,(6,)(6, — 0)). o If || H(60)%(6. — 6y)|| = w(n~'/?), the power tends to one at rate O (exp(—n| H (60)*(0.—6,)]?)).

e The likelihood-ratio test—T; :=2|L,(0y) — L,(6,)].
Asymptotic equivalence of the three tests.

o Asymptotic distribution. Estimation Bound under Model Misspecification
o /NS, (0y) =4 Ng(0,G(6y)) under Hy. _ _ |
o) We”_speciﬁed model, i_e_’ P e 73@’ |mp||es that G(@O) — H(HO) Estimation bound. Assume P gé 7)@ and let (9* = arg Mily-g L(@) It holds that
o NI Rao —>d X?i under Hp.
2 dy (0, e
e Asymptotic equivalence. HHn(en)l/Q(Hn — 9*)H S o + | <n ) 10%57
0 S,(0y) = Sn(6y) — S,(0,) = H,(0,)(0y — 0,,). | _ _ _
o0 Th,, = (971 B 90>THn(9n> (Qn . 90) 1 0p(1> — Ty + 0p(1>_ where d, := TI’(Q(Q*)) is the effective dimension.
oT)p= QSn(Qn)(HO _ en) + ((90 _ Hn)THn(én <(90 _ (9”) = Twsld + Op(l). e When the model is well-specufled, d, = d and ||Q((9*)H2 = 1.
e When the model is misspecified,
Eigendecay Dimension Dependency Ratio
. . . Gy H, dy d dy/d
Prelimilaries
Poly-Poly i~ 48 dP—a+1)Vvo d dB—)V(=1)
Dikin ellipsoid. A Dikin ellipsoid at 6, of radius r Poly-Exp i~® eV Jl—apvd d d—aevd
— i . 1
0,(0,) ={0co:|H"0-0) <) Exp-Poly e i7" 1 d d
dif p=v 1Lif u=v
e [he shape of a Euclidean ball is always the same. EXP-EXP e—p,i e—ui 1 if ©w>v d d_l if ©w>v
e The shape of a Dikin ellipsoid is adapted to the geometry near the optimum. o(v—n)d if < v d-lev—w)d if L < v

\

The bound matches the Cramér-Rao lower bound.
e d, can be approximated by d,, = Tr(G,(0,)"*H,(0,)'G,(0,)"?).
e How well does d,, approximate d,?
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Generalized self-concordance. Let f be convex, R > 0, and v > 0. We say f is (R, v)-generalized
self-concordant if (on a high level)

Vi@l £ B[V f @)
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We give two examples of losses as functions of parameters.

_ S | _ Sample Size Sample Size
e For Ime_ar. regression, its .Ioss is (R, u)—gener.allzed s.elf—concordant for. any R >0 and v > 0. q—>5 4= 10 e 415 e 4=20
e For logistic regression with || X ||, <, M, its loss is (2M, 2)-generalized self-concordant.
Strong convexity Self-concordance
Hessian lower bound Global Local Examp|es
Hessian varying rate No control Slow
. Generalized linear models. Consider the statistical model
Strong convexity Self-concordance

exp [0 t(x, y) + h(z,y)]
[ exp[0Tt(x,7) + h(z,7)]du(7)

with [[t(X,Y)]], <,s M. It induces the loss function

poly | z) ~ dpu(y)

00; 2) = —0"t(z,y) — h(z,y) + 1Og/e><p 0" t(z, 5) + h(z, g)ldu(y).

D
~ which is (2M 2)-generalized self-concordant.
Score matching with exponential families. Consider an exponential family with density log py(2) =
0't(z) + h(z) — A(#). The score matching loss is
LT T
00; z) = 5(9 A(2)0 —b(2) 0+ c(z) + const,
_1 -
—2 -1 g I 2 —2 -1 g I 2 where A(z) ==Y 7 _, agiz)(agi:)f is positive semi-definite,
p 2 p 2 9
Concentration of Hessian. A key result towards deriving our bounds is b(z) = Z [a(‘;z(g) + agi? agiz)] , and c(z) = [85;(5) + (agij)) ] .

k=1 k=1

11— ca(0)|H(0) = Hp(0) = [1+ cu(0)]H(0)
It is generalized self-concordant for all v > 2 and R > 0.

with probability at least 1 — &, where ¢,(§) = O(;/log (d/d)/n).



