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Gontext-Aware Headphones TinyML Challenges

Headphones that understand our audio However, running multiple neural
environments can enable several new networks to understand our audio
user experiences (e.g., iInform us of environments on-device remains a
Important sound events and adjust challenging task due to energy and
audio rendering based on content). memory constraints.

Gontributions Apply DNAS Over Bit-Width Evaluate On Two SED Tasks

: Apply an efficient differential neural .e., generip classi_fication aqd few-
Ident"u New NN Accelerators architecture search technique (i.e., shot learning, which potentially have

(e.g., NE16 on GAP9 [1]) that support Fracbits [2]) to search over the optimal different requirements on

both common (e.g., 4 bit) and bit-width per layer of a network and quantization granularity.
uncommon (e.g., 3, 5 bit) sub-byte evaluate the impact on actual hardware.
O p e ratl O n S - Let’s think about the forward path of Fracbits. Given activation x, Dllated Convolutional é Sound
c quantized to n-bit (e.g., n|=5.7 bits), this is the output of the layer |. _>!_, Recurrent Neural > e Event
Conv2D Example — Network (DCRNN) [3] 56 classes = O
Sre (CD) ~ ([nf] - nf)fl_nzj (SC) + ('n'f - I.an)f[ne] (.’E) @
— ' - ' Forexample, fg 7.pjt(X) = (6~ 57) *f5 i) + (5;m/‘ feec o7 x4 bins
- During the training process, for each layer, we ran the forward path twice.
- Fracbits allowed us to efficiently search, for each layer, whether to go up or down in quantization precision.
- After n epochs, we then rounded the fractional bit-width per layer (e.g., used 6 bits instead of 5.7) and
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I Sample M low-level classes, Prototypical Network
Memory Layout of Weights Lsize = Z (Wen + Serp) — Starget resulting in 12 classes per episode (HiSSNet [4]) v
1st bit of 16 channels 2nd bit of 16 channels e 4 4 4 /\ = 3
v * Storage footprint of weights ~ Overhead Storage target (e.g., S = 400KB) MobileNetV2 Encoder A
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Resulls

These best models use a variety of bit-widths for different layers EX Brlmental Setu
—— 7,5, and 4 for DCRNN and 6, 4, 3, and 2 for HiSSNet.

Dilated CRNN (400Kb) ‘ HiSSNet (700Kb) Datasets Aggregated monophonic audio recordings from /7 different

8 - L
" o 7. datasets: ESC50, TUT, TAU, FSD50K, BBC, VCTK and LibriSpeech.
We aChIeved an ave rage Of 62/0 < 6 211.6K files, 673.4 hours of audio. 90% for training, 10% evaluation.
- T K - .
memory reduct|on’ 46% Iatency § 2 Classes 56 class_es for generic SED (e.g., emergency alarm)
_ o £ 3 1263 unique voices of speakers.
redUCtlon, and 61/0 energy %: | | } 1{]] } { We used all of the classes when training few-shot learning
- . AR models for sound event detection and speaker identification
redUCtlon com pal‘ed tO 8_b|t mOde|S 0 2 q 4 6 0 20 40 (using HiISSNet) and removed the speaker subset when training
trained with tizati Layer Index Layer Index for generic SED (using Dilated CRNN).
( rained wi q uantization-aware Training  We compared quantization-aware training (QAT) using
o~ . . o~ . We evaluated these models’ energy consumption and Generic  predefined bit-widths and DNAS in this work.
training) while maintaining floatin
. g) 5 2 latency on an actual hardware (GAPS). SED QAT: First, 100 epochs in float, then 10 with QAT
p0| nt pe I’forman ce. NAS: First, 100 epochs in float, then 5 epochs of Fracbits, then 5
Dilated CRNN HiSSNet epochs of fine-tuning with the bit-widths fixed.
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M 320 | 8bit (1051 - . a4 Bbi Training  We used a 100-episode, 12-way, 5-shot setup
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: L : : 9 6-bit ' Learning NAS: First, 1000 epochs in float, then 50 epochs of Fracbits,
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