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Task Definition

Track 1 - Few shot TTS+VC with challenge dataset

Using a pretrained multi-lingual, multi-speaker TTS built on the challenge dataset, perform
few shot voice cloning by fine-tuning new speakers.
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[Baseline]

Utilizes an adversarial autoencoder to generate similar
distributions between the phoneme representation and
reference audio.

End-to-end (E2E) one-stage paradigm
- For easier / efficient training



Methodology
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[Multi-lingual Settings]

Language Embedding
- Language ID Alignment, and conversion into
256 dimensional vector

Integration of Language Information
- Concatenation with phoneme embedding at the
beginning of the text encoder.

- Concatenation with text encoder outputs, which
is used as inputs for stochastic duration
predictor.

Language embeddings go through additional conv1d
layer for integration with hidden states.



Methodology

[Multi-speaker Settings]

P ~ - Mel-spectrograms that are converted from reference audio
E%E are passed to a reference encoder made up of six 2-D
—L | convolution layers of filters [32, 32, 64, 64, 128, 128], and
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Training Scheme

[Multi-speaker Settings]

P D - Asingle linear layer is used to extract the weights and
%‘ biases (“kernel variables”) from speaker embedding s.
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Training Scheme
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[Multi-speaker Settings]

One conv1d layer is used to fuse the speaker kernel
variables with the phonemic representations.
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Training Scheme
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[Multi-speaker Settings]

Original Transformer CNN layers are substituted with

linear layers, with the speaker-related convolution layer
placed in between.

Reference [2]
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Training Scheme
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[Training Settings]

- Speaker information is only integrated starting from
the third iteration of the text encoder (Reference [2)).

- The outputs from the first two iterations are directly
passed to the duration predictor in order to
generate speaker-independent durations.

Reference [2]



Training Scheme
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[Training Settings]

Lvae — L'recon 1 Lkl + Ldur
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Equation from VITS paper



Experimental Settings

[Original LIMMITS Dataset]

- 14 speakers of equal gender distribution
across 7 different languages

- 560 hour corpus



Experimental Settings

[Original LIMMITS Dataset]

- 14 speakers of equal gender distribution
across 7 different languages

- 560 hour corpus

.

[Partial LIMMITS Dataset]

1 hour per speaker

A total of 14 hours with an average of
16.17 words per audio sample

22050 Hz



Experimental Settings

[Pre-Training]

- 410k steps over a span of 3 days

[Common Settings]

- 75 million parameters
- 4 NVIDIAA100 GPUs
- 64 batch size

[Fine-Tuning]

- 90k steps over a span of 18 hours



Model Optimization

Training Epochs

50000 iteration English
Hindi

90000 iteration English
Hindi

115000 iteration English

Hindi

CER
8.6%
14.93%
8.5%
15.09%
9.77%

15.02%

Further training does not necessitate in better
performance.

Clear pronunciation errors for English when training
models for a longer period of time.



Official Results

Table 1. Results for naturalness and speaker similarity.

Average o
Naturalness (MOS) 3.74 1.02
Similarity (Score) 3.85 1.34

m  Thesubmissions will be evaluated on naturalness and speaker similarity scores, for mono lingual
and cross lingual synthesis.

m  Eachsubmission will be evaluated by multiple evaluators, native to the target language.
From the LIMMITS Website



Research Questions



Analysis - speaker

Q) Is there a difference between using
the partial and full LIMMITS dataset?

Partial (2.5%)




Analysis - speaker
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Pretrained Full dataset

- Model pre-trained using 14-hour corpus results in speaker
embeddings that are relatively more scattered compared to the same
model that was pre-trained on the full 560-hour corpus.



Analysis - Speaker
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g Fine Tuning

from 1 hour / speaker dataset from Full dataset

- Fine tuning models trained on the partial and full dataset results in
similar speaker embeddings.

- Not much of a difference between partial and full dataset utilization in
terms of speaker distinguishment.



Research Question #2



Analysis - Speaker
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[Training Settings]

- Speaker information is only integrated starting from
the third iteration of the text encoder (Reference [2)).



Analysis - speaker

Q) Will additional speaker information
integration improve performance?
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Analysis
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[Additional Speaker Fusion]

Integrated SC Kernels into the last 4 / 6 / 8 iterations when there
were 6 / 8 / 10 text encoder blocks, respectively.

Conducted mono- and cross-lingual MOS for audios synthesized
in the target language of English.
- No native speakers for other Indic languages

No significant differences in terms of speaker similarity.



Analysis

[Speaker Fusion]

- Pre-trained Whisper2
- Conducted only for English and Hindi

- 10 iterations shows the best CER scores for Hindi.
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Analysis

Layers
6 lterations English
Hindi
8 lterations English
Hindi
10 Iterations English

Hindi

CER
8.45% £ 0.61
15% £ 0.37
9.63% * 0.91
15.51% £ 0.76
9.27% £ 0.99

14.88% + 0.52

[Speaker Fusion]

Only using 6 iterations for the text encoder
demonstrates better and stable performance for both
English and Hindi.

No significant results to back reasons for utilizing
additional speaker information fusion.
- Use settings leading to overall lower CER
and less model parameters.



Conclusion

- Simple, but effective language and speaker information integration methodology.

- Just using a 14-hour partial dataset results in natural and high speaker fidelity for both
mono- and cross-lingual settings.
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